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Abstract

Previous research applying kernel meth-
ods to natural language parsing have fo-
cussed on proposing kernels over parse
trees, which are hand-crafted based on do-
main knowledge and computational con-
siderations. In this paper we propose a
method for defining the kernel in terms
of a probabilistic model of parsing. This
model is then trained, so that the param-
eters of the probabilistic model reflect the
generalizations in the training data. The
method we propose then uses these trained
parameters to define a kernel for rerank-
ing parse trees. In experiments, we use
a neural network based statistical parser
as the probabilistic model, and use the
resulting kernel with the Voted Percep-
tron algorithm to rerank the top 20 parses
from the probabilistic model. This method
achieves a significant improvement over
the accuracy of the probabilistic model
alone.
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these optimization methods, work on kernel meth-
ods in natural language has focussed on the def-
inition of appropriate kernels for natural language
tasks. In particular, most of the work on pars-
ing with kernel methods has focussed on kernels
over parse trees (Collins and Duffy, 2002; Shen and
Joshi, 2003; Shen et al., 2003; Collins and Roark,
2004). These kernels have all been hand-crafted to
try to reflect properties of parse trees which are rel-
evant to discriminating correct parse trees from in-
correct ones, while at the same time maintaining the
tractability of learning.

Some work in machine learning has taken an al-
ternative approach to defining kernels, where the
kernel is derived from a probabilistic model of the
task (Jaakkola and Haussler, 1998; Tsuda et al.,
2002). This way of defining kernels has two ad-
vantages. First, linguistic knowledge about parsing
is reflected in the design of the probabilistic model,
not directly in the kernel. Designing probabilistic
models to reflect linguistic knowledge is a process
which is currently well understood, both in terms of
reflecting generalizations and controlling computa-
tional cost. Because many NLP problems are un-
bounded in size and complexity, it is hard to specify

1 Introduction all possible relevant kernel features without having

Kernel methods have been shown to be very ef© many features that the computations become in-
fective in many machine learning problems. Theyractable and/or the data becomes too §p’ar§ec—
have the advantage that learning can try to optimiZ&d: the kemel is defined using the trained param-
measures related directly to expected testing perfdfiers Of the probabilistic model. Thus the kernel is
mance (i.e. “large margin” methods), rather thaf part determined by the training data, and is auto-
the probabilistic measures used in statistical models; T ——— _ _
which are onlv indirectly related to expected test- For example, see (Henderson, 2004) for a discussion of
; y ) y p why generative models are better than models parameterized to
ing performance. Given the well-developed state afstimate the a posteriori probability directly.



matically tailored to reflect properties of parse treeen the linear discriminant functions:
which are relevant to parsing.

In this paper, we propose a new method for de- Fy(z,y) =< w,¢(z,y) >,

riving _a kerne! from a probab_ilistic model which iswheregb(x, y) is a feature vector for the sentence-
specifically tailored to reranking tasks, and we agee pair, w is a parameter vector for the discrimi-
ply this method to natural language parsing. For thﬁant function, andc a,b > is the inner product of

probabilistic model, we use a state-of-the-art neurglciors, ands. In the remainder of this section, we

network bgsed stati;tical parser (Henderson, 2003 characterize the kernel methods we consider in
The resulting kernel is then used with the Voted Pelarms of the feature extractoz, y)

ceptron algorithm (Freund and Schapire, 1998) to
reranking the top 20 parses from the probabilistie.1 Fisher Kernels

model. This method achieves a significant improverpe Fisher kernel (Jaakkola and Haussler, 1998) is
ment over the accuracy of the probabilistic modebne of the best known kernels belonging to the class

alone. of probability model based kernels. Given a genera-
tive model of P(z|0) with smooth parameterization,
2 Kernels Derived from Probabilistic the Fisher score of an examplés a vector of partial
Models derivatives of the log-likelihood of the example with

respect to the model parameters:

In recent years, several methods have been pr_qp(_)sed  dlog P(<]) Blog P(<]0)
for constructing kernels from trained probabilistic ¢4(2) = (7891 v T a9, )-

models. As usual, these kernels are then used Whthis score can be regarded as specifying how the
linear classifiers to learn the desired task. As well 8$,odel should be changed in order to maximize the
some empirical successes, these methods are M@iz|ihood of the example. Then we can define the
vated by theoretical results which suggest we Shou?lmilarity between data points as the inner product
expect some improvement with these classifiers ovgg the corresponding Fisher scores. This kernel is
the classifier which chooses the most probable agfien referred to as the practical Fisher kernel. The
swer according to the probabilistic model (i.e. thgneoretical Fisher kernel depends on the Fisher in-
maximum a posteriori (MAP) classifier). There istormation matrix, which is not feasible to compute
guaranteed to be a linear classifier for the deriveg), most of practical tasks and is usually omitted.
kernel which performs at least as well as the MAP The Fisher kernel is only directly applicable to
classifier for the probabilistic model. So, assUMpinary classification tasks. We can apply it to our
ing the classifier learning is sufficiently good, weigqk by considering an exampieto be a sentence-
should generally expect the derived kernel’s classj;ee pair(z,y), and classifying the pairs into cor-
fier to perform at least as well as the probabilisti¢ect parses versus incorrect parses. When we use the
model’s classifier, although empirical results on Qiisherscoresé(:n,y) in the discriminant functiod,
given task are never guaranteed. we can interpret the value as the confidence that the
In this section, we first present two previous kertreey is correct, and choose thein which we are
nels and then propose a new kernel specifically fahe most confident.
reranking tasks. In each of these discussions we
need to characterize the parsing problem as a claséi? TOP Kemels
fication task. Parsing can be regarded as a mappifiguda (2002) proposed another kernel constructed
from an input space of sentences X’ to a struc- from a probabilistic model, called the Tangent vec-
tured output space of parse tregs)). On the basis tors Of Posterior log-odds (TOP) kernel. Their TOP
of training sentences, we learn a discriminant fundkernel is also only for binary classification tasks, so,
tion ' : X x Y — R. The parse treg with the as above, we treat the inpuas a sentence-tree pair
largest value for this discriminant functidfi(x,y) and the output category € {—1,+1} as incor-
is the output parse tree for the sentemcédVe focus rect/correct. It is assumed that the true probability



distribution is included in the class of probabilis-3 The Probabilistic Model
tic models and that the true parameter veétbis

unique. The feature extractor of the TOP kernel fof© complete the definition of the kernel, we need
the input is defined by: to choose a probabilistic model of parsing. For

R ) this we use a statistical parser which has previously
$5(2) = (v(z,0), 2520 . 2o, been shown to achieve state-of-the-art performance,
namely that proposed in (Henderson, 2003). This

where v(z, 6 = log P(c = +1|z,0 . .
_( ) g P( 12.6) parser has two levels of parameterization. The first
log P(c = —1|z,0).

In addition to being at least as good as the MAIJ’eveI of param_eterization. _is in terms of a history.-
classifier, the choice of the TOP kernel feature e)pased generative probability model, but this level is

tractor is motivated by the minimization of the cIas-nOt_ appropriate for our purposes because it defines
sification error of a linear classifier w, ¢;(z) > an infinite number of parameters (one for every pos-

+ b. Tsuda (2002) demonstrates that this error i§ib|e partial parse history). When parsing a given

closely related to the estimation error of the postes_entence, the bounded set of parameters which are

rior probability P(c — +1|z, 6) by the estimator relevantto a given_ parse are estimated using a neural

g(<w, 6(2)> + b), whereg is a sigmoid function network. The weights of this r_1eu.ral network.form.

9(t) = 1/(1 + exp (—1)). the second level of parameterization. There is a fi-
The TOP kernel isn't quite appropriate for strucNite number of these parameters. Neural network

tured classification tasks becausg 2) is motivated training Is appl;]e_zdhtq detern;me th? valges OI thesef
by binary classificaton error minimization and thusoarameters_,.w IC |n,turn etermine t € values o
defined in terms of the probabilitf(c = +1|z, 6*). the probability model's parameters, which in turn

In the next subsection, we will adapt it to structuretfijetermIne the probabilistic model of parse trees.
classification We do not use the complete set of neural network

weights to define our kernels, but instead we define a
2.3 A TOP Kernel for Reranking third level of parameterization which only includes

We define the reranking task as selecting a parse trit¢ network’s output layer weights. These weights
from the list of candidate trees suggested by a probgefine anormalized exponential model, with the net-
bilistic model. Furthermore, we only consider learnWork's hidden layer as the input features. When we
ing to rerank the output of a particular probabilistidried using the complete set of weights in some small
model, without requiring the classifier to have goodcale experiments, training the classifier was more
performance when applied to a candidate list prdcomputationally expensive, and actually performed
vided by a different model. In this case, it is naturaflightly worse than just using the output weights.

to model the probability that a parse tree is the be$sing just the output weights also allows us to make

candidate given the list of candidate trees: some approximations in the TOP reranking kernel
Ple) which makes the classifier learning algorithm more
P(yk|x7y1>°"7ys) = X:tpi,(xk’yt)? efﬁCient.
wherey, ..., ys is the list of candidate parse trees.

To construct a new TOP kernel for reranking, we-1 A History-Based Probability Model
apply an approach similar to that used for the TORs with many other statistical parsers (Ratnaparkhi,
kernel (Tsuda et al., 2002), but we consider the prol1:999; Collins, 1999; Charniak, 2000), Henderson
ability P(yg|z,y1,...,ys,0%) instead of the proba- (2003) uses a history-based model of parsing. He
bility P(c = +1]z,6*) considered by Tsuda. The defines the mapping from phrase structure trees to

resulting feature extractor is given by: parse sequences using a form of left-corner parsing
B 5 u(ayed) 00(5.0) strategy (see (Henderson, 2003) for more details).

Go(2,uk) = (v(@,uk,0), =55 » T a6, ) The parser actions include: introducing a new con-
where U(x,yk,é) = log P(ykly1, - - ,ys,é) — stituent with a specified label, attaching one con-

log 3=z, P(ytly1, - - -, ys, ). We will call this ker-  stituent to another, and predicting the next word of
nel theTOP reranking kernel the sentence. A complete parse consists of a se-



guence of these actiondy,..., d,,, such that per- learning is biased towards paying more attention to
formingds,..., d,, results in a complete phrase strucinformation which passes through fewer history rep-
ture tree. resentations.

Because this mapping to parse sequences isTo exploit this learning bias, structural locality is
one-to-one, and the word prediction actions imsed to determine which history representations are
a complete parsel,...,d,, specify the sentence, input to which others. First, each history representa-
P(dy,...,d,,) is equivalent to the joint probability of tion is assigned to the constituent which is on the top
the output phrase structure tree and the input seaf the parser’s stack when it is computed. Then ear-
tence. This probability can be then be decomposdigr history representations whose constituents are
into the multiplication of the probabilities of eachstructurally local to the current representation’s con-
action decisiond; conditioned on that decision’s stituent are input to the computation of the correct

prior parse historyl;,..., d;_1. representation. In this way, the number of represen-
tations which information needs to pass through in
P(dy,....dp) = ; P(d;|dy,...,di—1) order to flow from history representatianto his-

tory representatiorj is determined by the structural
distance betweeils constituent ang’s constituent,
and not just the distance betweeérand 5 in the
The parameters of the above probability model arfgarse sequence. This provides the neural network
the P(d;|d1,...,d;—1). There are an infinite num- with a linguistically appropriate inductive bias when
ber of these parameters, since the parse histoifflearns the history representations, as explained in
di,..., d;—1 grows with the length of the sentence. Inmore detail in (Henderson, 2003).

other work on history-based parsing, independence once it has computed(d,,...,d;_1), the SSN
assumptions are applied so that only a finite amougses a normalized exponential to estimate a proba-

of information from the parse history can be treategjjity distribution over the set of possible next deci-
as relevant to each parameter, thereby reducing t8Rnsd, given the history:

number of parameters to a finite set which can be

estimated directly. Instead, Henderson (2003) uses P(di|d1;;’(‘i1;1%2 f“v“d, 1)

a neural network to induce a finite representation ZfeN(f )Z;,p(<;;;};(;;rlwdi71)>)7

of this unbounded history, which we will denote T

h(dy,...,d;_1). Neural network training tries to find Where by 6; we denote the set of output layer
such a history representation which preserves all thgeights, corresponding to the parser action
information about the history which is relevant to es!V (di—1) defines a set of possible next parser actions

3.2 Estimating Decision Probabilities with a
Neural Network

timating the desired probability. after the step/;_; andd denotes the full set of model
parameters.
P(di|dy,..., di—1) = P(d;|h(dy,..., di-1)) We trained SSN parsing models, using the on-line

Using a neural network architecture called Simpl-);(erSion of _Backpropagatiop tq perform' thg gradient
Synchrony Networks (SSNs), the history represent&€Scent with a maximum likelihood objective func-
tion A(ds,..,d;_,) is incrementally computed from tion. This learning simultaneously tr|e§ to optimize
features of the previous decisioh_; plus a finite the parameters of the output computation and the pa-

set of previous history representatiolgl; ..., d;), rameters of the mappingsdi ..., d;—1). With multi-

j < i—1. Each history representation is a finitel@yered networks such as SSNs, this training is not

vector of real numbers, called the network’s hiddelguargnteed to converge to a _glo.bal optlmum, but in
layer. As long as the history representation for popractm(_—:- a network whose criteria value is close to
sition s — 1 is always included in the inputs to thethe optimum can be found.

history representation for positianany information
about the entire sequence could be passed from his-
tory representation to history representation and @nce we have defined a kernel over parse trees, gen-
used to estimate the desired probability. Howeveeral techniques for linear classifier optimization can

Large-Margin Optimization



be used to learn the given task. The most sophigs = 0

ticated of these techniques (such as Support Veder j = 1 .. n

tor Machines) are unfortunately too computationally for k = 2 .. S A

expensive to be used on large datasets like the Pennif <w,¢(z/,yl)> > <w,¢(2?,y])>

Treebank (Marcus et al., 1993). Instead we use a w = w + A(yl,yl)(¢(27, ) — d(27, 7))

method which has often been shown to be virtu- o

ally as good, the Voted Perceptron (VP) (Freund anlalgure 1: The modification of the perceptron algo-

Schapire, 1998) algorithm. The VP algorithm wadithm

originally applied to parse reranking in (Collins and

Duffy, 2002) with the Tree kernel. We modify the number of the neural network weights. Even though

perceptron training algorithm to make it more suitwe use only the output layer weights, this vector

able for parsing, where zero-one classification losgrows with the size of the vocabulary, and thus can

is not the evaluation measure usually employed. Wee large. The kernels presented in section 2 all lead

also develop a variant of the kernel defined in sede feature vectors without many zero values. This

tion 2.3, which is more efficient when used with thehappens because we compute the derivative of the

VP algorithm. normalization factor used in the network’s estima-
Given a list of candidate trees, we train the clastion of P(d;|ds,...,d;—1). This normalization factor

sifier to select the tree with largest constitugfit depends on the output layer weights corresponding

score. TheF; score is a measure of the Sim"arityto all the possible next decisions (see section 3.2).

between the tree in question and the gold standafdiis makes an application of the VP algorithm in-

parse, and is the standard way to evaluate the acdgasible in the case of a large vocabulary.

racy of a parser. We denote tkih candidate tree ~ We can address this problem by freezing the

for thej'th sentence:’ byyi Without loss of gener- normalization factor when Computing the feature

ality, let us assume that is the candidate tree with Vector. Note that we can rewrite the model log-

the largestt score. probability of the tree as:

The Voted Perceptron algorithm is an ensem-log P(y|f) =
ble method for combining the various intermediate 5. log ( exp(<ba;,h(d1,...di—1)>) ) =
models which are produced during training a per- 2ren(a;_y) eP(Pehldr...di1)>)

ceptron. It demonstrates more stable generalization ~ 2-i(<0d;, h(d1,...,di—1)>)—
performance than the normal perceptron algorithm  2-i 108 > ten(d;_) €2P(<0p, h(d1,..., di1)>).
when the problem is not linearly separable (Freungle treat the parameters used to compute the first
and Schapire, 1998), as is usually the case. term as different from the parameters used to com-
We modify the perceptron algorithm by introduc-pute the second term, and we define our kernel only
ing a new classification loss function. This modifi-using the parameters in the first term. This means
cation enables us to treat differently the cases whetkeat the second term does not effect the derivatives in
the perceptron predicts a tree with Bnscore much the formula for the feature vectan(x, y). Thus the
smaller than that of the top candidate and the casésature vector for the kernel will contain non-zero
where the predicted and the top candidates have simntries only in the components corresponding to the
ilar score values. The natural choice for the losparser actions which present in the candidate deriva-
function would beA(y,y{) = Fi(y]) — Fi(y}), tion for the sentence and in the first vector compo-
where Fl(yi) denotes thel; score value for the nent. We have applied this technique to the TOP
parse tre@i. This approach is very similar to slack reranking kernel, the result of which we will call the
variable rescaling for Support Vector Machines proéfficient TOP reranking kernel
posed in (Tsochantaridis et al., 2004). The learnin
algorithm we employed is presented in figure 1.

When applying kernels with a large training cor-We used the Penn Treebank WSJ corpus (Marcus
pus, we face efficiency issues because of the large al., 1993) to perform empirical experiments on

g The Experimental Results



the proposed parsing models. In each case the in- LR | LP | Fg—
put to the network is a sequence of tag-word pairs.  |SSN-Freg200 87.2| 88.5| 87.8
We report results for two different vocabulary sizes, |Fisher-Freg200 87.2| 88.8| 87.9
varying in the frequency with which tag-word pairs | TOP-Fre¢200 87.3| 88.9| 88.1
must occur in the training set in order to be included |TOP-Eff-Freq-200 || 87.3| 88.9 | 88.1
explicitly in the vocabulary. A frequency thresh- SSN-Freg20 88.1| 89.2| 88.6
old of 200 resulted in a vocabulary of 508 tag-word |TOP-Eff-Freq:20 || 88.2| 89.7 | 88.9
pairs and a threshold of 20 resulted in 4215 tag-word i

pairs. We denote the probabilistic model trained 2Pl€ 1: Pércentage labeled constituent recall (LR),
with the vocabulary of 508 by the SSN-Fre20, precision (LP), and a combination of boths(F) on

the model trained with the vocabulary of 4215 b))/alldatlon set sentences of length at most 100.

the SSN-Freg20.

Testing the probabilistic parser requires using gle 13 Both the Fisher kernel and the TOP kernels
beam search through the space of possible parsggow better accuracy than the baseline probabilistic
We used a form of beam search which prunes theggel, but only the improvement of the TOP kernels
search after the prediction of each word. We set thg statistically significant. For the TOP kernel, the
width of this post-word beam to 40 for both testingmprovement over baseline is about the same with
of the probabilistic model and generating the candiyoth vocabulary sizes. Also note that the perfor-
date list for reranking. For training and testing ofmance of the efficient TOP reranking kernel is the

the kernel models, we provided a candidate list consame as that of the original TOP reranking kernel,
sisting of the top 20 parses found by the generativgy the smaller vocabulary.

probabilistic model. When using the Fisher kernel,
we added the log-probability of the tree given by th?he results on the testing set for our best model

probabilistic model as the feature. This was not ne?r-] . -
essary for the TOP kernels because they already co 1 OP-Efficient Freq20)> and several other statisti

tain a feature corresponding to the probability esti(-:aI parsers (Collins, 1999; Collins and Duiffy, 2002;

L . Collins and Roark, 2004; Henderson, 2003; Char-
mated by the probabilistic model (see section 2.3).niak 2000 Collins. 2000: Shen and Joshi. 2004:

We trained the VP model with all three kernelsShen et al., 2003; Henderson, 2004; Bod, 2003)

;J_ggglzt he ‘ggg VTVgrg ;?fcé bulaztg/o(lzls:]er]Ff@O% First note that the parser based on the TOP efficient
“Treqevu, -Eff-Freq200) butonly the ef- | o o) has petter accuracy than (Henderson, 2003),

ficient TOP reranking kernel model was trained with . 1 .sed the same parsing method as our base-
the vocabulary of 4215 words (TOP-Efi-Frezp). line model, although the trained network parameters

The non-sparsity of the feature vectors for other kerere not the same. When compared to other kernel
nels led to the excessive memory requirements a'?ﬁ‘ethods, our approach performs better than those

larger testing time. In each case, the VP model W8S <ed on the Tree kernel (Collins and Duffy, 2002;
run for only one epoch. We would expect some im- ’ '

. s Collins and Roark, 2004), and is only 0.2% worse
provement if running it for more epochs, as has be

o . . an the best results achieved by a kernel method for
empirically demonstrated in other domains (Freun arsing (Shen et al., 2003; Shen and Joshi, 2004)
and Schapire, 1998). h ' ' '

To avoid repeated testing on the standard testing
set, we first compare the different models with their >All our results are computed with the evalb program fol-

idati owing the standard criteria in (Collins, 1999), and using the
performance on the validation set. Note that the Va| tandard training (sections 2—-22, 39,832 sentences, 910,196

idation set wasn’t used during learning of the kemqi/ords), validation (section 24, 1346 sentence, 31507 words),
models or for adjustment of any parameters. and testing (section 23, 2416 sentences, 54268 words) sets

f h . g:ollins, 1999).
Standard measures o accuracy are shown in t " “We measured significance with the randomized signifi-
- cance test of (Yeh, 2000).

2\We used a publicly available tagger (Ratnaparkhi, 1996) to °On sentences of length at most 40, TOP-Efficient-E&6
provide the tags. model gets 89.6% recall and 90.5% precision.

For comparison to previous results, table 2 lists



LR | LP | Fg—y+ One potential drawback of this method is that it
Collins99 88.1| 88.3| 88.2 doesn’t take into account the actudgl score of the
Collins&Duffy02 || 88.6| 88.9 | 88.7 candidate and considers only the position in the list
Collins&Roark04 || 88.4 | 89.1 | 88.8 ordered by theF;, score. We expect that an im-
Henderson03 88.8| 89.5| 89.1 provement could be achieved by combining our ap-
Charniak00 89.6| 89.5| 89.5 proach of scaling updates by thg loss with the
TOP-Eff-Freq>20| 89.1| 90.1| 89.6 all pairs approach of (Shen and Joshi, 2004). Use
Collins00 89.6| 89.9| 89.7 of the F; loss function during training demonstrated
Shen&Joshi04 89.5| 90.0| 89.8 better performance comparing to the 0-1 loss func-
Shen et al.03 89.7| 90.0| 89.8 tion when applied to a structured classification task
Henderson04 89.8| 90.4| 90.1 (Tsochantaridis et al., 2004).
Bod03 90.7| 90.8| 90.7 All the described kernel methods are limited to

* Fs—1 for previous models may have rounding errors.  tha reranking of candidates from an existing parser

Table 2: Percentage labeled constituent recall (LRylue to the complexity of finding the best parse given
precision (LP), and a combination of bothy(F) on  a kernel (i.e. the decoding problem). (Taskar et

the entire testing set. al., 2004) suggested a method for maximal mar-
gin parsing which employs the dynamic program-
6 Related Work ming approach to decoding and parameter estima-

tion problems. The efficiency of dynamic program-

The first application of kernel methods to parsingning means that the entire space of parses can be
was proposed by Collins and Duffy (2002). Theyconsidered, not just a candidate list. However, not
used the Tree kernel, where the features of a tree a4@ kernels are suitable for this method. The dy-
all its connected tree fragments. The VP algorithmhamic programming approach requires the feature
was applied to rerank the output of a probabilistigector of a tree to be decomposable into a sum over
model and demonstrated an improvement over thearts of the tree. In particular, this is impossible with
baseline. the TOP and Fisher kernels derived from the SSN

Shen and Joshi (2003) applied an SVM baseghodel. Also, it isn’t clear whether the algorithm
voting algorithm with the Preference kernel definedemains tractable for a large training set with long
over pairs for reranking. To define the Preferencgentences, since the authors only present results for
kernel they used the Tree kernel and the Linear kesentences of length less than or equal to 15.
nel as its underlying kernels and achieved state-of-
the-art results with the Linear kernel. 7 Conclusions

In (Shen et al.,, 2003) it was pointed out that
most of the arbitrary tree fragments allowed by thd his paper proposes a method for deriving a ker-
Tree kernel are linguistically meaningless. The aurel for reranking from a probabilistic model, and
thors suggested the use of Lexical Tree Adjoininglemonstrates state-of-the-art accuracy when this
Grammar (LTAG) based features as a more linguignethod is applied to parse reranking. Contrary to
tically appropriate set of features. They empirinost of the previous research on kernel methods in
cally demonstrated that incorporation of these fegsarsing, linguistic knowledge does not have to be ex-
tures helps to improve reranking performance. pressed through a list of features, but instead can be

Shen and Joshi (2004) proposed to improve magxpressed through the design of a probability model.
gin based methods for reranking by defining thd'he parameters of this probability model are then
margin not only between the top tree and all thé&ained, so that they reflect what features of trees are
other trees in the candidate list but between all theelevant to parsing. The kernel is then derived from
pairs of parses in the ordered candidate list for théhis trained model in such a way as to maximize its
given sentence. They achieved the best results whegefulness for reranking.
training with an uneven margin scaled by the heuris- We performed experiments on parse reranking us-
tic function of the candidates positions in the listing a neural network based statistical parser as both



the probabilistic model and the source of the listlames Henderson. 2004. Discriminative training of
of candidate parses. We used a modification of & neural network statistical parser. Rroc. 42nd
the Voted Perceptron algorithm to perform reranking Meeting of Association for Computational Linguistics
} Barcelona, Spain.
with the kernel. The results were only 0.2% worse
than the best current kernel-based parsing methothmmi S. Jaakkola and David Haussler. 1998. Ex-
and amongst the best current statistical parsers. ~ Ploiting generative models in discriminative classi-
A fiers. Advances in Neural Information Processes Sys-
In recent years, probabilistic models have become ¢ 11
commonplace in natural language processing. We _ N
believe that this approach to defining kernels wouldlitchell P. Marcus, Beatrice Santorini, and Mary Ann

simplify the problem of defining kernels for these Marcinkiewicz. 1993. Building a large annotated cor-

us of English: The Penn TreebankKomputational
tasks, and could be very useful for many of them. Einguisticsgl9(2):313—330. P

This would be particularly true for tasks where there _ _ _
is less data available than in parsing, for which largeidwait Ratnaparkhi. 1996. A maximum entropy model

: . for part-of-speech tagging. IRroc. Conf. on Empir-
margin methods work particularly well. ical Methods in Natural Language Processjmages

133-142, Univ. of Pennsylvania, PA.
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