
Online Graph Planarisation for Synchronous Parsing of
Semantic and Syntactic Dependencies

Ivan Titov
University of Illinois at U-C

titov@illinois.edu

James Henderson Paola Merlo Gabriele Musillo
University of Geneva

{James.Henderson,Paola.Merlo,Gabriele.Musillo}@unige.ch

Abstract

This paper investigates a generative history-based
parsing model that synchronises the derivation of
non-planar graphs representing semantic depen-
dencies with the derivation of dependency trees
representing syntactic structures. To process
non-planarity online, the semantic transition-based
parser uses a new technique to dynamically reorder
nodes during the derivation. While the synchro-
nised derivations allow different structures to be
built for the semantic non-planar graphs and syn-
tactic dependency trees, useful statistical depen-
dencies between these structures are modeled using
latent variables. The resulting synchronous parser
achieves competitive performance on the CoNLL-
2008 shared task, achieving relative error reduc-
tion of 12% in semantic F score over previously
proposed synchronous models that cannot process
non-planarity online.

1 Introduction
Significant advances in natural language processing applica-
tions will require the development of systems that exhibit
some shallow representation of meaning. Parsing techniques
have successfully addressed semantic problems such as re-
covering the logical form of a sentence for information ex-
traction [Wong and Mooney, 2007]. Many current methods
for shallow semantic parsing follow syntactic parsing in fo-
cusing on parsing models for labelled directed graphs that
form trees. While the space of tree structures is sufficiently
constrained to apply standard parsing algorithms, it is not
expressive enough to represent many semantic phenomena,
such as dependencies between the predicates in a sentence
and their respective arguments. Lexicalised unification-based
grammars have explicitly modelled such linguistic facts with
directed graphs that are not trees.

In this paper, we develop a generative model for the la-
belled directed graphs recently used to represent syntactic
and semantic dependencies. Figure 1 illustrates the kind of
structures that are studied here. Following the CoNLL-2008
shared task formalism [Surdeanu et al., 2008], we assume a
dependency formalism for syntax, as well as a dependency

1 2 4 5 63

AGENT

AGENT

THEME

THEME

SBJ NMODCOORD CONJ

SBJ

Sequa makes and repairs enginesjet

Figure 1: A non-planar semantic dependency graph labelled
with semantic roles paired with a planar syntactic dependency
tree labeled with grammatical relations.

formalism for the relation between a predicate and its argu-
ments: Directed arcs in the dependency graph represent the
semantic relations between the predicates and the arguments,
and labels associated with the arcs encode semantic roles. As
can be observed in Figure 1, semantic dependency structures
are very different from syntactic dependency structures. Syn-
tactic dependencies form trees, and only 7.6% of sentences
contain crossing arcs in their syntactic structures, in the data
provided by the CoNLL-2008 shared task. In contrast, se-
mantic dependency structures are in general not trees, since
they do not form a connected graph and some nodes have
more than one parent. In the CoNLL-2008 data, only 22%
of sentences have semantic structures which can be treated
as trees. Also, 43% of these sentences have semantic struc-
tures that contain crossing arcs. These fundamental differ-
ences motivate the development of new techniques specifi-
cally for handling semantic dependency structures.

Following the recent approach of Henderson et al. [2008],
we capture the different nature of these two linguistic levels
by two synchronised transition-based systems that separately
derive the syntactic structure and the semantic structure. Dif-
ferently from Henderson et al. [2008], however, we do not
attempt to extend the standard methods for un-crossing arcs
(called planarisation) to the semantic structure.

For the semantic structure, instead, we augment the transi-
tion system with a new operation, that we call Swap, which
disentangles crossing arcs online. We demonstrate that this
parsing algorithm is sufficiently powerful to parse 99% of the
semantic graphs in the training set of the CoNLL-2008 shared
task. Also, the resulting model achieves an improvement of
about 3% in F1 score on labelled semantic dependencies over
the previous synchronous model of Henderson et al. [2008].

Our probabilistic model is based on Incremental Sigmoid
Belief Networks (ISBNs), a recently proposed latent variable
model for syntactic structured prediction, which has shown

very good behaviour for both constituency [Titov and Hen-
derson, 2007b] and dependency parsing [Titov and Hender-
son, 2007c]. The use of latent variables enables this architec-
ture to be extended to learning a synchronous parse of syntax
and semantics [Henderson et al., 2008]. This model max-
imises the joint probability of the syntactic and semantic de-
pendencies and thereby enforces that the output structure be
globally coherent, but the use of synchronous parsing allows
it to maintain separate structures for the syntax and semantics.

The best model we have trained achieves 81.8% macro-
average F1 performance for the joint task, which would cor-
respond to the fifth position in the ranking of systems partici-
pated in the CoNLL-2008 shared task, and first in the ranking
of systems that learn the syntax and semantics jointly. Impor-
tantly, ours is also the best system which does not use either
model combination or reranking. It is therefore simpler, and
a good candidate for use as a component in an ensemble.

In what follows, we introduce the online planarisation tech-
nique in section 2; we briefly review the synchronous parsing
method and learning architecture we use in sections 3 and 4;
we report and discuss the experimental results in section 5;
we relate this work to existing work, and draw some conclu-
sions, in sections 6 and 7.

2 Non-Planar Parsing
The differences between syntactic and semantic structures
make it difficult to apply syntactic dependency parsing tech-
niques to semantic dependency parsing. Because they are not
trees, it is impossible to apply dependency parsing algorithms
based on Minimum Spanning Tree algorithms (e.g. [McDon-
ald et al., 2005]) directly to semantic dependency structures.
It is fairly straightforward to adapt transition-based parsing
algorithms such as [Nivre et al., 2006] to such structures
[Henderson et al., 2008; Sagae and Tsujii, 2008], but these
algorithms inherit the constraint from their tree-parsing coun-
terparts that the structures be planar. Planarity requires that
the graph can be drawn in the semi-plane above the sentence
without any two arcs crossing, and without changing the or-
der of words.1

As will be discussed in section 6, there have been multiple
approaches to transition-based non-planar parsing for depen-
dency trees. The most common have been approaches which
first transform a non-planar tree into a planar tree with ex-
tended labels, and then apply planar parsing [Nivre and Nils-
son, 2005]. We use such an approach [Henderson et al., 2008]
as our baseline. Another approach is to extend the parsing
model itself so that it can parse arbitrary non-planar structures
[Attardi, 2006]. In this paper we adopt a simplified version
of this approach, where we introduce a single new action. Al-
though the resulting parser is not powerful enough to parse all
non-planar structures, this single action can handle the vast
majority of non-planar structures which occur in the data.

2.1 Non-Planar Parsing using Swapping
For parsing non-planar graphs, we introduce an action Swap,
which swaps the top two elements on the parser’s stack. We

1Some parsing algorithms require projectivity, this is a stronger
requirement that disallows not only crossing arcs but also edges cov-
ering the root node [Nivre and Nilsson, 2005].

add this action to the transition-based parsing algorithm for
planar graphs proposed in Henderson et al. [2008], which is
based on Nivre’s parsing algorithm [Nivre et al., 2006].

In the Henderson et al. [2008] planar parsing algorithm, the
state of the parser is defined by the current stack S, the queue
I of remaining input words, and the partial labeled depen-
dency structure constructed by previous parser actions. The
parser starts with an empty stack S and terminates when it
reaches a configuration with an empty input queue I . The
algorithm uses four types of actions:

1. The action Left-Arcr adds a dependency arc from the
next input word wj to the word wi on top of the stack
and selects the label r for the relation between wi and
wj .

2. The action Right-Arcr adds an arc from the word wi on
top of the stack to the next input word wj and selects the
label r for the relation between wi and wj .

3. The action Reduce pops the word wi from the stack.
4. The action Shiftwj ,s shifts the word wj from the queue to

the stack. It also marks the next input word as a predicate
with sense s or declares that it is not a predicate.

In this paper, we propose the addition of the Swap action:
5. The action Swap swaps the two words at the top of the

stack.
The Swap action is inspired by the planarisation algorithm
described in Hajičová et al. [2004], where non-planar trees
are transformed into planar ones by recursively rearranging
their sub-trees to find a linear order of the words for which
the tree is planar (also see the discussion of Nivre [2008] in
section 6). For trees, such an order is guaranteed to exist, but
for semantic graphs this is not the case. For example, there is
no such order for the semantic dependency graph in the top
half of Figure 1. Rather than first sorting and then parsing a
planar structure, the Swap action allows us to reorder words
online during the parse. This allows words to be processed in
different orders during different portions of the parse, so some
arcs can be specified using one ordering, then other arcs can
be specified using another ordering.

This style of parsing algorithm allows the same structure
to be parsed multiple ways. Rather than trying to sum over
all possible ways to derive a given structure, which would
be computationally expensive, models are trained to produce
parses in a canonical order. We have tried two canonical pars-
ing orders. Both orders only use swapping when it is needed
to uncross arcs, but they differ in when the swapping is done.

The first canonical parsing order we use in this paper tries
to perform Swap actions at positions where they are pre-
dictable, and therefore can be easily learned. This order only
uses the Swap action as a last resort, when no other action
is possible. With this ordering the Swap action is used when
the word under the top of the stack needs to be attached to
the front of the queue, which is a decision we would hope
to be able to learn. Unfortunately, this ordering is not com-
pletely general: in the CoNLL-2008 data, 2.8% fewer seman-
tic structures are parsable with this ordering than are possible
with the Swap action in general. For example, the structure
in Figure 2 cannot be parsed with this ordering, even though

1 42 5 63Suddenly haveCDC and productsDEC

Figure 2: An example structure cannot be parsed with
the last-resort algorithm though there exists a deriva-
tion: Shift(1), Shift(2), Swap(1,2), Shift(3), Reduce(3),
Shift(4), Left-Arc(4,5), Swap(1,4), Left-Arc(1,5), Reduce(1),
Swap(2,4), Left-Arc(2,5), Shift(5), Right-Arc(5,6), Reduce(5),
Left-Arc(2,6), Reduce(2), Left-Arc(4,6), Reduce(4), Shift(6).

there exist a sequence of actions which derives it. We will
call this canonical parse ordering the last-resort algorithm.

To define a canonical ordering which is guaranteed to find
a derivation if one exists, we need to make use of swapping
preemptively to uncross future arcs. This ordering follows a
standard planar parsing order until there are no other actions
possible except for Swap and Shift. At this point it computes
the ordered list of positions of words in the queue to which
the word wi on the top of the stack should be connected in
the remaining part of the parse. A similar list should be com-
puted for word wj under the top of the stack. These two lists
are compared using lexicographical order and if word wj’s
list precedes word wi’s list, then they must be swapped. Oth-
erwise, the Shift action is performed. In Figure 2, after the ac-
tion Shift(2), the list of future arcs for word CDC2 on the top
of the stack is equal to {5,6} and the list for word Suddenly1

under the top of the stack is {5}. {5} precedes {5,6} in the
lexicographical order, therefore Swap should be performed.
We call this algorithm the exhaustive algorithm.

Theorem 1. If a graph is parsable with the set of operations
defined above then the exhaustive algorithm is guaranteed to
find a derivation.

Proof sketch. Space constraints do not allow us to present the
proof, so we explain only the intuition behind the algorithm,
which is relatively straightforward to expand into a formal
proof. All the attachment actions are performed between a
word on the top of the stack and a word in the queue. There-
fore, when deciding on the order of two elements on the top
of the stack we should prefer to place on top the word which
will be attached sooner (A). If the next attachment for both
words happens with the same queue then we should prefer
either to move up the word which can be reduced from the
stack immediately after the attachment (B) or to move up the
word which will participate in the subsequent attachment ear-
lier than the other word (C). Note, that all these tests (A-C)
are implicitly embedded in the test of the lexicographical or-
der between the lists of their future connections.

Both these algorithms extend existing canonical orders
with a decision for when to swap. In our experiments, we
apply these extensions to the arc-eager late-reduce strategy,
where we keep words in the stack even after they are con-
nected to all their children and parents in the graphs. Such
‘processed’ words are removed from the stack only when they
prevent other operations, such as attaching words under ‘pro-
cessed’ words on the stack or swapping words separated by
one or more ‘processed’ words. In preliminary experiments,

1 2 3 4 5 6Funds also buy and sellmight

Figure 3: A non-planar semantic dependency graph that can-
not be parsed with swapping.

Figure 4: Configurations of arcs which cannot be parsed with
the Swap action.

we found that this late-reduce strategy leads to improved per-
formance, as observed previously [Nivre et al., 2006].2

2.2 The Structures Parsable with Swapping
The class of structures parsable with swapping covers a sur-
prising proportion of sentences. In our experiments on the
CoNLL-2008 shared task dataset [Surdeanu et al., 2008], in-
troducing the Swap action was sufficient to parse the semantic
dependency structures of 38,842 out of 39,279 training sen-
tences (99%). Of these, 16,993 sentences required a Swap
to be parsed (43%). In these sentences, the Swap action was
used 31,110 times for the exhaustive algorithm, and 55,071
times for the last-resort algorithm, which is 0.15 swaps per
arc and 0.27 swaps per arc, respectively.

From a linguistic point of view, among many linguistic
structures which this parsing algorithm can handle without
any construction dependent-operations, one of the frequent
ones is coordination. The algorithm can process coordination
of two conjuncts sharing a common argument or being argu-
ments of a common predicate, for instance, Sequa makes and
repairs jet engines, as well as similar structures with three
verb conjuncts and two arguments, for instance Sequa makes,
repairs and sells jet engines.3

In general, the Swap action can parse any isolated pair of
crossing arcs. However, not all the configuration where a sin-
gle arc crosses more than one other arc can be parsed. A
frequent example of an unparsable structure which involves 3
arguments attached to 2 predicates is presented in Figure 3.

Theorem 2. A graph cannot be parsed with the defined set
of parsing operations iff the graph contains at least one of
the subgraphs presented in Figure 4, the unspecified arc end-
points can be anywhere strictly-following those specified, and
circled pairs of endpoints can either be a single word or two
distinct words.4

2Nivre et al. [2006] used a late-reduce strategy for
all the languages in the CoNLL-2005 shared task. See
http://w3.msi.vxu.se/users/jha/conllx/ for details.

3The structure of a typical non-planar semantic graph in-
volving coordination is illustrated in Figure 1, whose deriva-
tion is the sequence of actions Shift(1), Right-Arc(1,2), Shift(2),
Swap(1,2), Shift(3), Reduce(3), Right-Arc(1,4), Shift(4), Shift(5),
Reduce(5), Left-Arc(4,6), Reduce(4), Reduce(1), Left-Arc(2,6), Re-
duce(2), Shift(6).

4Note that the directionality of the arc is unimportant.

Proof sketch. Again, due to space considerations, we are not
able to provide a detailed proof here, but the proof strategy
is the following. If a graph is unparsable then there exists
a derivation state where two words A and B on the top of
the stack have their rightmost attachment after the next at-
tachment of some word C deeper in the stack. Then all the
possible linear word orders for A, B and C are considered.
For each such an order all the arc configurations which lead
to the described final derivation state are then derived. Note
that according to Theorem 1 it is sufficient to consider only
derivations defined by the exhaustive algorithm.

3 Synchronous derivations
We synchronize syntactic and semantic derivations using the
model of Henderson et al. [2008]. The derivations for syntac-
tic dependency trees are the same as those specified above for
semantic dependencies, but there is no Swap action and the
other actions are more constrained in when they can apply.5

Let Td be a syntactic dependency tree with derivation
D1

d, ..., Dmd

d , and Ts be a semantic dependency graph with
derivation D1

s , ..., Dms
s . To define derivations for the joint

structure Td, Ts, we specify that the two derivations are syn-
chronised at every word.

We divide the two derivations into the chunks between
shifting each word onto the stack, ct

d = D
bt

d

d , ..., D
et

d

d and

ct
s = D

bt
s

s , ..., D
et

s
s , where D

bt
d−1

d = D
bt

s−1
s = Shiftt−1

and D
et

d+1
d = D

et
s+1

s = Shiftt. Then the actions of
the synchronous derivations consist of quadruples
Ct = (ct

d, Switch, ct
s, Shiftt), where Switch means switching

from syntactic to semantic mode. This gives us the following
joint probability model, where n is the number of words:

P (Td, Ts) = P (C1, ..., Cn) =
∏

t

P (Ct|C1, ..., Ct−1).

The probability of each synchronous derivation chunk Ct

is the product of four factors, related to the syntactic level, the
semantic level and the two synchronising steps:

P (Ct|C1, . . . , Ct−1) =
P (ct

d|C1, ..., Ct−1)P (Switch|ct
d, C

1, ..., Ct−1)×
P (ct

s|Switch, ct
d, C

1, ..., Ct−1)P (Shiftt|ct
d, c

t
s, C

1, ..., Ct−1).

These synchronous derivations C1, . . . , Cn only require a
single input queue, since the Shift actions are synchronised,
but they require two separate stacks, one for the syntactic
derivation and one for the semantic derivation.

The probability of ct
d is decomposed into derivation action

Di probabilities, and likewise for ct
s:

P (ct
d|C1, ..., Ct−1) =

∏
i

P (Di
d|D

bt
d

d , ..., Di−1
d , C1, ..., Ct−1).

5The amount of non-planarity in syntax for this dataset is very
small and, therefore, the choice of the parsing strategy for non-
planar syntactic dependencies cannot seriously affect the perfor-
mance of our method. We used the standard HEAD pre-/post-
processing method of Nivre and Nilsson [2005] for syntax.

4 The Learning Architecture
The synchronous derivations described above are modelled
with an Incremental Sigmoid Belief Network (ISBN) [Titov
and Henderson, 2007a]. They have previously been ap-
plied to constituency parsing [Titov and Henderson, 2007b],
dependency parsing [Titov and Henderson, 2007c], and
synchronous syntactic-semantic parsing [Henderson et al.,
2008]. ISBNs are dynamic Bayesian Networks which use
vectors of latent state variables to represent features of the
parsing history relevant to the future decisions. Our ISBN
model distinguishes two types of latent states: syntactic
states, when syntactic decisions are considered, and semantic
states, when semantic decision are considered. These latent
variable vectors are conditioned on variables from previous
states via a pattern of edges determined by the previous deci-
sions. For these we adopt a set of edges previous proposed
in Henderson et al. [2008], namely those for their “large”
model, which includes latent-to-latent connections both from
syntax states to semantics states and vice versa.

Word Semantic step features
LEX POS DEP SENSE

Next + + + +
Top + + + +
Top - 1 + + +
LDep Next +
Head Top/Top-1 + + +
Head Next + + +
RDep Top/Top-1 +
LDep Top/Top-1 +
LSib Top/Top-1 + +
LSib Next + +
RSib Top/Top-1 + +
RSib Next + +

Table 1: Features for semantic states. Columns identify fea-
ture types, rows identify words (with respect to the queue and
the semantic stack), and a + identifies which features are used
for which words. Next= front of input queue; Top= top of
stack; Top-1= element below top of stack; R/LDep= right-
most/leftmost dependent; R/LSib= right/left sibling.

The latent variable vectors are also conditioned on a set of
observable features of the derivation history. For these fea-
tures, we extended the features proposed in Henderson et al.
[2008]. The set of observable features for syntactic states is
left unchanged, and the set of observable features for seman-
tic states given in Table 1 is expanded to allow better handling
of the non-planar structures in semantics. Most importantly,
all the features of the top of the stack are now also included
for the word just under the top of the stack.

5 Experiments and Discussion
We train and evaluate our models on data provided for the
CoNLL-2008 shared task on joint learning of syntactic and
semantic dependencies. The data is derived by merging a
dependency transformation of the Penn Treebank with Prop-
bank and Nombank [Surdeanu et al., 2008]. An illustrative
example of the kind of labelled structures that we need to
parse was given in Figure 1. More details and references on

CONLL MEASURES CROSSING PAIRS
TECHNIQUE Synt SRL M Semantics

LAS F1 F1 P R F1

Last resort 86.6 76.2 81.5 61.5 25.6 36.1
Exhaustive 86.8 76.0 81.4 59.7 23.5 33.8
HEAD 86.7 73.3 80.1 78.6 2.2 4.2
Planar 85.9 72.8 79.4 und 0 und

Table 2: Scores on the development set; Und= undefined;
SRL= semantic graph; M F1= Macro F1

CONLL MEASURES CROSSING PAIRS
MODEL Synt SRL M Semantics

LAS F1 F1 P R F1

Johansson 89.3 81.6 85.5 67.0 44.5 53.5
Ciaramita 87.4 78.0 82.7 59.9 34.2 43.5
Che 86.7 78.5 82.7 56.9 32.4 41.3
Zhao 87.7 76.7 82.2 58.5 36.1 44.6
This Paper 87.5 76.1 81.8 62.1 29.4 39.9
Henderson 87.6 73.1 80.5 72.6 1.7 3.3
Lluis 85.8 70.3 78.1 53.8 19.2 28.3

Table 3: Scores on the test set; SRL= semantic graph; M F1=
Macro F1

the data, the conversion of the Penn Treebank format to de-
pendencies, and on the experimental set-up are given in Sur-
deanu et al. [2008].

We compare several experiments in which we manipulate
different variants of online planarisation techniques for the
semantic component of the model. The models are illustrated
in Table 2. We compare both the last resort (first line) and
the exhaustive strategy (second line) to two baselines. The
first baseline (third line) uses Nivre’s HEAD label propaga-
tion technique to planarise the syntactic tree, extended to se-
mantic graphs following Henderson et al. [2008]. The second
baseline is an even simpler baseline that only allows planar
graphs, and therefore fails on non-planar graphs (fourth line).
In training, if a model fails to parse an entire sentence, it is
still trained on the partial derivation.6

In our experiments, we use the measures of performance
used in the CoNLL-2008 shared task, typical of dependency
parsing and semantic role labelling. Syntactic performance is
measured by percentage of correct labelled attachments (LAS
in the tables) and semantic performance is indicated by the F-
measure on precision and recall on semantic arcs (indicated as
SRL measures in the tables). These two components are then
averaged in a score called Macro F1. To evaluate directly the
impact of the Swap action on crossing arcs, we also calculate
precision, recall and F-measure on pairs of crossing arcs. In
the case of multiple crossings, a link can be a member of more
than one pair.

The results of these experiments are shown in Table 2.
The results are clear. If we look at the left panel of Table 2
(CoNLL Measures), we see that the last resort strategy per-
form the best, and that both online planarisation techniques
outperform the extension of Nivre’s technique to semantic

6All variants use the same set of features and interconnections,
latent variable vectors of size 80, and a word frequency cut-off of 5.
The data is parsed with a beam search algorithm described in Hen-
derson et al. [2008] with a beam of 20.

graphs (third line) and the simplistic baseline. Clearly, the
improvement is due to better recall on the crossing arcs, as
shown by the right-hand panel.

These experiments were run on the development set. The
best performing model (LAST RESORT) was then tested on
the test set and compared to some other models that partici-
pated in the CoNLL-2008 shared task. The models were cho-
sen among the 20 participating systems either because they
had better results or because they learnt the two representa-
tions jointly. Results of these experiments on the test sets
are summarised in Table 3. The method reported here is an
improvement on the best performing single systems (Hen-
derson). Specifically, while the already competitive syntac-
tic performance is not significantly degraded, we report an
improvement of 3% on the semantic graphs. This score ap-
proaches those of the best systems. As the righthand panel
on crossing arcs indicates, this improvement is due to better
recall on crossing arcs. Also, importantly, this model is one
of the few that does joint learning, with the best results in that
category. Four systems, however, can report better perfor-
mance than our system. The best performing system learns
the two representations separately, with a pipeline of state-of-
the-art systems, and then reranks the joint representation in a
final step [Johansson and Nugues, 2008]. Similarly, Che et al.
[2008] also implement a pipeline consisting of state-of-the-art
components where the final inference stage is performed us-
ing Integer Linear Programming to ensure global coherence
of the output. The other two better performing systems use
ensemble learning techniques [Ciaramita et al., 2008; Zhao
and Kit, 2008]. If we take into account the fact that ours is
the best single-system, joint learner, we can confirm that joint
learning is a promising technique, but that on this task it does
not outperform reranking or ensemble techniques. The sys-
tem’s architecture is, however, simpler.

Other joint models do not perform as well as our system.
In Lluis and Marquez [2008] a fully joint model is developed,
that learns the syntactic and semantic dependencies together
as a single structure. This differentiates their approach from
our model, which learns two separate structures, one for syn-
tax and one for semantics, and relies on latent variables to
represent the interdependencies between them. It is not clear
whether it is this difference in the way the models are parame-
terised or the difference in the estimation techniques used that
gives us better performance, but we believe it is the former.

6 Related Work
Approaches to dealing with non-planar graphs belong to two
conceptual groups: those that manipulate the graph, either by
pre-processing or by post-processing, and those that adapt the
algorithm to deal with non-planarity.

Among the approaches that, like ours, devise an algorithm
to deal with non-planarity, already Yngve [1960] proposed
a limited manipulation of registers to handle discontinuous
constituents, which guaranteed that parsing/generation could
be performed with a stack of very limited depth.

An approach to non-planar parsing which is more similar
to ours has been proposed in Attardi [2006]. Attardi’s depen-
dency parsing algorithm adds six new actions, which allows
this algorithm to parse any type of non-planar tree. Our Swap

action is related to Attardi’s actions Left2 and Right2, which
create dependency arcs between the second element on the
stack and the front of the input queue. In this algorithm, ev-
ery attachment to an element below the top of the stack re-
quires the use of one of the new actions, whose frequency is
much lower than the normal attachment actions, and therefore
harder to learn. This contrasts with the Swap action, which
handles reordering with a single action, and the normal at-
tachment operations are used to make all attachments to the
reordered word. Though much simpler, this single action can
handle the vast majority of crossing arcs which occur in the
data.

In a recently published paper, Nivre [2008] presents the
formal properties of a swap action for dependency grammars
that enables parsing of non-planar structures. The formal
specifications of this action are different from the specifica-
tions of the action proposed here. Nivre’s action can swap ter-
minals repeatedly and move them down to an arbitrary point
into the stack. This Swap action can potentially generate word
orders that cannot be produced by only swapping the two top-
most elements in the stack. However, when defining the ora-
cle parsing order for training, Nivre [2008] assumes that the
dependency structure can be planarised by changing the order
of words. This is not true for many of the semantic depen-
dency graphs, because they are not trees.

The most common approach to dealing with non-planar
structures is to transform crossing arcs into non-crossing arcs
with augmented labels [Nivre and Nilsson, 2005]. One draw-
back of this approach is that it leads to a leaky probability
model, in that structures with augmented labels that do not
correspond to any tree receive non-zero probabilities. When
parsing with such a model, the only computationally feasible
search consists in finding the most likely augmented struc-
ture and remove inconsistent components of the dependency
graph [Nivre et al., 2006; Titov and Henderson, 2007c]. But
this practically-motivated method is not equivalent to a sta-
tistically motivated – but computationally infeasible – search
for the most probable consistent structure. Moreover, learn-
ing these graphs is hard because of the sparseness of the aug-
mented labels.

A chart-parsing algorithm targeting a subclass of non-
planar structures was very recently proposed in Kuhlmann
and Satta [2009]. However, they have not constructed and
evaluated statistical models based on their formalism.

Other solutions apply data-driven transforms to the output
of a strictly planar (projective) dependency parser, as in cor-
rective modelling [Hall and Novak, 2005] and approximate
non-projective parsing [McDonald and Pereira, 2006].

7 Conclusions
In this paper, we report on a online technique to parse non-
planar structures that handles many of the graphs used to rep-
resent predicate-argument semantics. This technique is em-
bedded in a synchronous dependency parser for syntax and
semantics that learns these two representations jointly. In the
future we will study the applicability of our online planarisa-
tion technique to syntactic parsing of languages with highly
non-planar syntactic representations.

Acknowledgements
The authors thank Dan Roth and the reviewers for helpful comments.
This work was partly funded by European Community FP7 grant
216594 (CLASSiC, www.classic-project.org), Swiss NSF grant
114044, Swiss NSF fellowships PBGE2-117146 and PBGE22-
119276, NSF grant SoD-HCER-0613885, DARPA funding under
the Bootstrap Learning Program.

References
G. Attardi. Experiments with a multilanguage non-projective depen-

dency parser. In Proc. CoNLL, 2006.
W. Che, Zh. Li, Y. Hu, Y. Li, B. Qin, T. Liu, and S. Li. A cascaded

syntactic and semantic dependency parsing system. In Proc. of
CoNLL, 2008.

M. Ciaramita, G. Attardi, F. DellOrletta, and M. Surdeanu. DESRL:
A linear-time semantic role labeling system. In Proc. of CoNLL,
2008.

E. Hajičová, J. Havelka, P. Sgall, K. Veselá, and D. Zeman. Issues
of Projectivity in the Prague Dependency Treebank. (81), 2004.

K. Hall and V. Novak. Corrective modeling for non-projective de-
pendency parsing. In Proc. of the Int. Workshop on Parsing Tech-
nology (IWPT’05), 2005.

J. Henderson, P. Merlo, G. Musillo, and I. Titov. A latent variable
model of synchronous parsing for syntactic and semantic depen-
dencies. In Proc. of CoNLL, 2008.

R. Johansson and P. Nugues. Dependency-based syntactic–semantic
analysis with propbank and nombank. In Proc. of CoNLL, 2008

M. Kuhlmann and G. Satta. Treebank grammar techniques for non-
projective dependency parsing. In Proc. EACL, 2009.

X. Lluis and L. Marquez. A joint model for parsing syntactic and
semantic dependencies. In Proc. of CoNLL, 2008.

R. McDonald and F. Pereira. Online learning of approximate depen-
dency parsing algorithms. In EACL, 2006.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-projective
dependency parsing using spanning tree algorithms. In Proc. of
EMNLP, 2005.

J. Nivre and J. Nilsson. Pseudo-projective dependency parsing. In
CoNLL 2005.

J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S. Marinov. Pseudo-
projective dependency parsing with support vector machines. In
CoNLL, 2006.

J. Nivre. Sorting out dependency parsing. In Proc. of GoTAL, 2008.
K. Sagae and J. Tsujii. Shift-reduce dependency DAG parsing. In

Proc. of COLING, 2008.
M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and J. Nivre.

The CoNLL-2008 shared task on joint parsing of syntactic and
semantic dependencies. In CoNLL, 2008.

I. Titov and J. Henderson. Incremental Bayesian networks for struc-
ture prediction. In ICML, 2007.

I. Titov and J. Henderson. Constituent parsing with incremental sig-
moid belief networks. In Proc. ACL, 2007.

I. Titov and J. Henderson. A latent variable model for generative
dependency parsing. In Proc. of the Int. Conf. on Parsing Tech-
nologies (IWPT’07), 2007.

Y. W. Wong and R. Mooney. Learning synchronous grammars for
semantic parsing with lambda calculus. In Proc. ACL, 2007.

V. H. Yngve. A model and an hypothesis for language structure.
American Philosophical Society, 104(5), 1960.

H. Zhao and C. Kit. Parsing syntactic and semantic dependencies
with two single-stage maximum entropy models. In Proc. of
CoNLL 2008, Manchester, UK, 2008.

