
UNIVERSITE DE GENEVE
CENTRE UNIVERSITAIRE

D’INFORMATIQUE
ARTIFICIAL INTELLIGENCE

LABORATORY

Date: June, 2006

TECHNICAL REPORT

Bayes Risk Minimization

in Natural Language Parsing

Ivan Titov

University of Geneva

24 rue Général Dufour

CH-1211 Genève 4, Switzerland

James Henderson

University of Edinburgh

2 Buccleuch Place

Edinburgh EH8 9LW, UK

e-mail: ivan.titov@cui.unige.ch james.henderson@ed.ac.uk

Abstract

Candidate selection from n-best lists is a widely used approach in natural language parsing.

Instead of attempting to select the most probable candidate, we focus on prediction of a new

structure which minimizes an approximation to Bayes risk. Our approach does not place any

restrictions on the probabilistic model used. We show how this approach can be applied in

both dependency and constituent tree parsing with loss functions standard for these tasks.

We evaluate these methods empirically on the Wall Street Journal parsing task.

1 Introduction

Much of the recent work in the field of natural language parsing has been focused on the candidate
reranking scenario, where a baseline probabilistic model provides a n-best list of candidate parse
trees and then a discriminative classifier selects one candidate from the list [1, 5, 12, 3]. The
discriminative classifier can often be regarded as a probabilistic model, with the most probable
candidate according to this model being selected (i.e. maximum a-posteriori probability decoding).

A different use of the n-best lists has been considered in the machine translation and speech
processing areas. Here candidate lists are often used to approximate conditional risk [13, 18].
Then either the candidate with the smallest approximate conditional risk is selected, or a search
is performed for an optimal structure under this approximation. The latter is known as Minimum
Bayes Risk (MBR) decoding.

MBR decoding differs from Maximum A-posteriori Probability (MAP) decoding only when the
loss function employed differs from 0-1 loss, as is the standard situation in complex structure pre-
diction tasks and, particularly, in parsing. However, the only attempt until recently to optimize
Bayes risk in parsing [7] only considered the constituent tree parsing task with binarized unlexi-
calized probabilistic context-free grammars (PCFG). They achieved very low accuracy with their
over-simplistic model.

In this paper we focus on MBR decoding on the basis of n-best lists, without placing any
constraints on what probabilistic model is used. We consider both the constituent and dependency
tree parsing tasks. A novel algorithm is proposed for prediction of a Minimum Bayes risk (MBR)
tree given a candidate list and a standard measure of accuracy, F1 measure on labeled constituents.
In dependency parsing, we show that MBR decoding with standard accuracy measures can be done
using previously proposed algorithms. The MBR decoding approach is evaluated on the standard
Wall Street Journal (WSJ) parsing task with different generative and discriminative models.1 In
all the cases a significant improvement over MAP decoding is achieved. When we use the best
parsing method for this task [1], our approach for MBR decoding demonstrates the best published
result for WSJ constituent parsing task, a F1 score of 91.7%.

2 Bayes risk minimization

The Bayes risk of a model y = h(x) is defined as:

R(h) = Ex,y∆(y, h(x)),

where the expectation is taken over all the possible sentences x and trees y and ∆(y, y ′) denotes
a loss incurred by selecting a tree y′ for a sentence x when the correct tree is y. It follows that an
optimal classifier h? is one which chooses the tree y that minimizes the conditional risk:

h?(x) = argmin
y′

∑

y

P (y|x)∆(y, y′),

where minimization is performed over all possible trees for sentence x.
In order to estimate the conditional risk for a tree y on the basis of a candidate list, we have

to make the assumption that the risk is proportional to the average loss in respect to the elements

1Software for MBR decoding both for constituent and for dependency tree parsing will be available on the
authors’ webpages.

1

Figure 1: An example constituent tree (left), and a dependency tree (right).

of the candidate list:

∑

y′

P (y|x)∆(y, y′) ≈ α

∑
y′∈G(x) P (y′|x)∆(y, y′)
∑

y′∈G(x) P (y′|x)
,

where G(x) denotes a candidate list provided by a baseline model for the input x and α is some
constant value. Replacing the true probabilities with their estimates Pθ(y

′|x), we can define the
model

ĥ(x) = arg min
y

∑

y′∈G(x)

Pθ(y
′|x)∆(y, y′). (1)

Probability estimates can be provided by the baseline model, which can be either conditional
Pθ(y|x) or joint Pθ(x, y), since the normalization factor does not affect ĥ(x). As will be discussed
in section 5, the probability estimates can also be computed from the most widely used non-
probabilistic discriminative reranking models.

In the following two sections, we will consider how MBR decoding (equation 1) can be performed
for standard loss functions in the constituent and dependency tree parsing tasks. For more complex
loss function or very tight constraints on the running time, a simpler approach can be used, where
a parse tree is selected from the candidate list:

h̄(x) = arg min
y∈G(x)

∑

y′∈G(x)

Pθ(y
′|x)∆(y, y′). (2)

We will refer to this approach in equation 2 as MBR reranking, and to the complete decoding
approach in equation 1 as MBR prediction.

3 Constituent tree parsing

Parsing is the task of mapping from sequences of words to trees. The most common type of
tree used is the constituent tree, illustrated on the left in Figure 1. A constituent tree defines a
hierarchical decomposition of a sentence into phrases. We can think of a constituent tree as a set of
non-crossing labeled brackets, i.e. triples (X, s, e), where X is a label of an internal node, s and e
are indexes of the first and the last words spanned by the node. Accuracy of the model is evaluated
by comparison of a tree y predicted by the model with a ’gold standard’ tree y? provided by a
human annotator. Standard measures of accuracy for constituent parsing involve the number of
equally labeled brackets |y

⋂
y?|, where for bracket equality both the spans and the labels should

be the same. The Labeled Recall (LR) measure is defined as |y
⋂

y?|/|y?|, Labeled Precision (LP)
as |y

⋂
y?|/|y| and their harmonic mean F1(y

?, y) = 2|y
⋂

y?|/(|y?|+ |y|). Individual minimization
of the LP measure is not possible and individual minimization of the LR measure will make a
strong preference towards large trees.2 It follows that the natural choice is to use the loss function

2In [7] optimization of the LR measure was considered, but because they only allow binary trees the denominator
in |y

T

y?|/|y?| does not depend on the selected tree y.

2

∆(y, y′) = (1−F1(y, y′)) in MBR decoding methods. Then the expression (1) for this loss function
can be rewritten as

ĥ(x) = arg max
y

∑

y′∈G(x)

Pθ(y
′|x)

|y
⋂

y′|

|y′| + |y|
.

We can further transform this into:

ĥ(x) = argmax
y

∑

b∈y

w|y|(b), (3)

where the bracket weight w|y|(b) is defined as

wm(b) =
∑

y′∈G(x)

Iy′(b)
Pθ(y

′|x)

|y′| + m
,

and IX denotes the indicator function for a set X . Thus, for a fixed number of brackets m, the task
of finding of an optimal tree with m brackets is equivalent to the search for a set of m non-crossing
brackets with maximum weight, where the weight of a set is the sum of weights of its elements
wm(b).3 We can solve this task with dynamic programming. Then the complete maximization in
expression 3 can be done by considering an appropriate range of values for m.

Let C[p, l, s] be a dynamic programming table that stores the score of the maximal subforest
with p internal nodes (brackets) spanning a subsequence from position s to position s + l − 1. We
denote as vj a word at position j in the sentence x. For each split of the subsequence vs,..., vs+l−1

defined by index k, we can distinguish 3 sets of brackets: brackets in the forest spanning the left
subsequence vs,..., vs+k−1, brackets in the forest spanning the right subsequence vs+k,..., vs+l−1 and
brackets of the form (X, s, s+ l− 1) spanning the whole subsequence vs,..., vs+l−1. All the possible
sizes of these sets which sum up to p should be considered. If we consider outputting t brackets of
the form (X, s, s+l−1), then the optimal choice is to select from the candidates trees the t brackets
with the largest weights wm(b). The recursive computation of C[p, l, s] can be summarized in the
following expression:

C[p, l, s] = max
0≤t≤min(N [l,s],p)

0≤u≤p−t
1≤k≤l−1

(
∑

1≤i≤t

wm(b[l, s, i]) + C[u, k, s] + C[p − u − t, l − k, s + k]),

where u is the number of brackets in the a subforest spanning the left subsequence, b[l, s, 1],...,
b[l, s, N [l, s]] is the set of brackets of the form (X, s, s + l − 1) sorted in decreasing order of their
weights, and N [l, s] is the size of this set. The weight of the optimal forest of m elements is given by
C[m, n, 1] where n is a length of the sentence. Pseudo-code for the algorithm is given in Figure 2.
A simple modification of this algorithm that keeps track of optimal values for k, t and u, can be
used to recover a tree. If we note that N [l, s] is bounded by the number of possible node labels,
then it is easy to see that the algorithm has a complexity of O(m2n3).

It can be shown that to perform maximization across values of m in 3 only a fixed range of
values needs to be considered:

d
β

2 − β
min

y′∈G(x)
|y′|e ≤ m ≤ b

(2 − β)

β
max

y′∈G(x)
|y′|c, β =

maxy′∈G(x) Pθ(y
′|x)∑

y′∈G(x) Pθ(y′|x)
. (4)

Therefore, the total runtime of the algorithm for finding an optimal tree is O(n6 log3 n). In practice
this algorithm is quite tractable, because a multiplicative constant is small. This complexity would
be prohibitive for a parser with a large number of node labels, but MBR decoding does not need
to choose them from the full set for each span but only from a small set of labels appearing in the
candidates. Also, in practice a much smaller range of m values than stated in 4 can be considered.
In all the experiments discussed in section 6, average MBR decoding time on a standard desktop
PC was always below 0.2 seconds per sentence.

3Note that any set of m non-crossing brackets can be used to define a tree by adding a root bracketing which
spans the whole sentence. The root bracketing is ignored in the standard loss measures, and we ignore it when
measuring the size of a tree.

3

C[p, l, s] = 0 ∀ p, l, s
for p = 1 to m do

for l = 1 to n do

for s = 1 to n − l + 1 do

wloc = 0, t = 0
while t ≤ N [l, s] and t ≤ p do

wloc := wloc + wm(b[l, s, t])
for k = 1 to l − 1 do

C[p, l, s] := max0≤u≤p−t (C[p, l, s], wloc + C[u, k, s] + C[p − u − t, l − k, s + k])
end for

t := t + 1
end while

end for

end for

end for

return C[m, n, 1]

Figure 2: An algorithm for finding the weight of an optimal forest with m internal nodes.

4 Dependency tree parsing

Another common way to define parse trees is as a dependency tree [11], illustrated on the right
in Figure 1. There is an increasing interest in dependency parsing because learning to predict
dependency trees is a simpler task than learning to predict constituent trees, and because for a
number of applications the dependency representation is more appropriate than hierarchical phrase
structure. In this section we show how the complete decoding approach in expression 1 can be
computed efficiently for dependency trees.

Dependency trees represent dependences of words in sentences as an acyclic directed graphs
with labeled edges, where each label represents the type of the relation. As we did before for
constituent trees, we augment the dependency trees with a root node which serves as a root for
the tree. For each edge a parent node is called a head and a child node is called a dependent. In
Figure 1, the tree is drawn with the original order of the words and without any crossing edges,
making it a projective dependency tree. A tree is projective iff for any edge v→u and any word
w between u and v, v is an ancestor of w. Even though the projectivity requirement is too strict
for many languages, it is widely used in practice and often viewed as a reasonable assumption.
In this section we will briefly discuss how Bayes risk minimization can be performed both with
projectivity requirement and without it.

Standard measures of accuracy for dependency parsing are labeled and unlabeled relation ac-
curacies. The labeled accuracy is the fraction of relations where both edges and labels match, and
the unlabeled accuracy is defined similarly but without requiring labels to match. We will consider
optimization of unlabeled accuracy but it is trivial to optimize the labeled accuracy in the same
way. If we consider a tree as a set of edges, then expression 1 can be rewritten as

ĥ(x) = arg max
y

∑

y′∈G(x)

Pθ(y
′|x)|y

⋂
y′|.

We can represent a score of a dependency tree y as a linear function

ĥ(x) = argmax
y

∑

e∈y

w(e),

where w(e), a score for a relation e, is defined as

w(e) =
∑

y′∈G(x)

Pθ(y
′|x)Iy′(e).

4

Consequently, the score for a tree y is decomposed into a sum of scores of individual relations. The
case of linear models with feature representation decomposable into a sum over individual relations
was studied in [15]. For non-projective dependency trees, decoding is equivalent to searching for a
Minimum Spanning Tree in directed graphs, a problem for which O(n2) algorithms are known [19].
For projective dependency trees, as pointed out in [15], the parsing algorithm of [6], with a runtime
of O(n3), can be used.

5 Probability estimation with discriminative classifiers

As we mentioned in the introduction, n-best lists in parsing are often used to learn a discriminative
classifier, called a reranker, to predict the best candidate in a list. Consequently, we might expect
better performance if we used probability estimates from rerankers in 1, rather than using estimates
from baseline models. This is trivial when a discriminative reranker defines a probabilistic model,
but less so if voted models or maximal margin classifiers are used. In this section we will briefly
review applicable techniques.

If an SVM is used to learn the classier, we suggest using the normalized exponential form to
estimate probabilities of candidates in this list. This form can be viewed as a direct generalization
of the approach proposed in [17], where the logistic sigmoid of the SVM output is used as the
probability estimator for binary classification problems. Therefore, the appropriate form of the
probability estimate for parsing and other structured classification problems is the following:

ĥ(x) = arg min
y

∑

y′∈G(x)

exp(AŵT φ(y′))∆(y, y′), (5)

where ŵ is a decision vector learned during classifier training, φ(y′) is a feature representation of
the tree y′ and the scalar parameter A should be tuned on a development set.

Another type of models popular in natural language processing are voted models [4]. For such
models, which combine classifiers using votes, the number of votes cast for each candidate can
be used to define this discriminative probability. The discriminative probability of a candidate is
simply the number of votes cast for that candidate normalized across candidates. Intuitively, we
can think of this method as treating the votes as a sample from the discriminative distribution.

6 Experimental evaluation

To perform empirical evaluations of the proposed methods, we considered the task of constituent
tree parsing of the Penn Treebank Wall Street Journal corpus [14]. First, we perform experiments
with SVM Struct [20] as the learner. However, use of SVM Struct for large scale parsing experi-
ments is computationally expensive4, so here we use only a small portion of the available training
data to perform evaluation. In the other two sets of experiments, described below, we test our
best model on the standard Wall Street Journal parsing benchmark [2] with the Voted Perceptron
(VP) algorithm [4] and maximum entropy reranker [1] as the the learners.

6.1 Experiments with SVM Struct and a neural network probabilistic

model

For our first set of experiments, we choose to use a publicly available neural network based gen-
erative model of parsing, Simple Synchrony Networks (SSN) [8], as the baseline model. As a
discriminative reranker we use a SVM modification [20] with the TOP Reranking Kernel (TRK)
derived from the SSN probabilistic model [9]. This model combination is a good candidate for our
experiments because the SSN parser alone achieves state-of-the-art results on the standard Wall
Street Journal (WSJ) parsing problem, and data-defined kernels derived from it have recently
been used with the Voted Perceptron algorithm on the full scale WSJ parsing task, achieving a
significant improvement in accuracy over the neural network parser alone [9].

4Proposals have been made for addressing this problem, but since this issue is orthogonal to those addressed in
this paper, we do not consider them here.

5

Table 1: Percentage labeled constituent recall (LR), precision (LP), combination of both (F1) and
percentage complete match (CM) on the testing set.

SSN SSN-Rerank SSN-Predict TRK TRK-Rerank TRK-Predict
F1 81.3 81.8 82.1 81.7 82.1 82.3
LP 81.7 82.3 82.6 82.4 82.8 83.1
LR 80.9 81.4 81.6 81.1 81.5 81.6
CM 18.3 18.3 18.7 18.2 18.6 18.9

Both the neural network probabilistic model and the discriminative classifier were trained on
section 0 (1,921 sentences, 40,930 words). Section 24 (1,346 sentences, 29,125 words) was used as
the validation set during the neural network learning and for choosing parameters of the models.
Section 23 (2,416 sentences, 54,268 words) was used for the final testing of the models. For training
and testing of the kernel models, we provided a candidate list consisting of the top 20 parses found
by the probabilistic model. For the testing set, selecting the candidate with an oracle results in an
F1 score of 89.1%.

We used the SVM-Struct software package [20] to train the SVM with the TRK kernel [9], with
slack rescaling and linear slack penalty. The loss function is defined as ∆(y, y′) = 1 − F1(y, y′),
where F1 denotes F1 measure on bracketed constituents. This loss function was used for rescaling
the slacks in all the SVM models, as well as in the definition of the Bayes risk. Model parameters,
including the parameter A in 5, were adjusted on the basis of validation set accuracy.

Standard measures of parsing accuracy, plus complete match accuracy (0-1 error), on the fi-
nal testing set are shown in table 1.5 As the baselines, the table includes the results of the
standard SVM classifier with the TRK kernel [9], and the baseline probabilistic model (SSN) [8].
SSN-Rerank and SSN-Predict are decoding methods that use probability estimates from the SSN
probabilistic model, whereas TRK-Rerank and TRK-Predict a based on probability estimates from
the SVM. Both SSN-Rerank and TRK-Rerank are MBR reranking approaches, as in 2, whereas in
SSN-Predict and TRK-Predict full MBR decoding is performed with the dynamic programming
algorithm proposed in section 3.

All the proposed MBR approaches show better F1 accuracy than the MAP decoding with the
corresponding model. Both full MBR decoding methods demonstrate better accuracy than the
corresponding MBR reranking approaches (SSN-Predict vs SSN-Rerank, TRK-Predict vs TRK-
Rerank). All these differences are statistically significant.6 It should also be noted that, surpris-
ingly, exact match for SSN-Predict and TRK-Predict is also improved, even though the F1 loss
function was optimized.

These experimental results demonstrate that the MBR decoding approaches considered in this
paper demonstrate significant improvement over the baseline MAP decoding approaches. The
relative error reduction over MAP decoding approaches is larger than the error reduction that was
previously achieved by reranking with data-defined kernels [9] over the baseline SSN model.

6.2 Experiments with the voted perceptron algorithm and tree kernels

The above experiments with SVM Struct demonstrate empirically the viability of our approaches.
The aim of experiments on the entire WSJ is to test whether our approaches still achieve significant
improvement when more accurate models are used, and also to show that they generalize well to
learning methods different from SVMs. We replicated the parse reranking experimental setup used
for the evaluation of the Tree Kernel in [4], where the candidate list was provided by the generative
probabilistic model [2] (model 2). A list of on average 29 candidates was used, with an oracle F1

score on the testing set of 95.0%. We trained the VP algorithm using the same parameters for
the Tree Kernel and probability feature weighting as described in [4]. A publicly available efficient
implementation of the Tree Kernel was utilized to speed up computations [16]. As in the previous
section, votes of the perceptron were used to define the probability estimate used in the classifier.

5All our results are computed with the evalb program [2].
6We measured significance of all the experiments in this paper with the randomized significance test [21].

6

Table 2: Result on the testing set. Percentage labeled constituent recall (LR), precision (LP),
combination of both (F1), an average number of crossing brackets per sentence (CB), percentage
of sentences with 0 and ≤ 2 crossing brackets (0C and 2C, respectively).

LR LP F1∗ CB 0C 2C
CO99 88.1 88.3 88.2 1.06 64.0 85.1
TK 88.6 88.9 88.7 0.99 66.5 86.3
TK-Rerank 89.0 89.5 89.2 0.91 66.6 87.4
TK-Predict 89.1 89.5 89.3 0.89 66.9 87.6

LR LP F1 CB 0C 2C
ME 91.0 91.8 91.4 0.73 73.3 89.7
ME-Rerank 91.2 92.1 91.6 0.68 73.7 90.9
ME-Predict 91.3 92.1 91.7 0.67 74.5 91.1

* F1 for previous models may have rounding errors.

The results for our Bayes risk reranking and prediction approaches (TK-Rerank and TK-
Predict, respectively), along with the standard Tree Kernel VP results (TK) [4] and the prob-
abilistic baseline [2] (CO99) are presented on the left in table 2. The Bayes risk minimization
models improve in F1 score over the standard VP results. Differences between them and the TK
model are statistically significant. The achieved error reduction over the TK model is larger than
the error reduction of the standard Tree Kernel VP over MAP decoding with the probabilistic
model CO99, and this improvement is achieved without adding any additional linguistic features,
but by using only a different decoding method. It is interesting to note that the model improves
in other accuracy measures as well.

6.3 Experiments with a maximum entropy reranker

In the last set of experiments we considered the parsing model which achieves the best results
on WSJ parsing task [1]. It consists of a 50-best generative parser and a maximum entropy
reranker. We used probability estimates given by the reranker to define the risk approximation.
The experimental setup of [1] was replicated. However the maximum entropy reranker results
appeared to be considerably better than the results published in [1].7 Selecting the candidate with
an oracle results in an F1 score of 96.8%. Accuracy measure for the maximum entropy reranking
(MER) and our MBR decoding approaches (ME-Predict, ME-Rerank) are presented on the right
in table 2.

Both MBR decoding methods improve over MAP decoding (ME) and ME-Predict improvement
is statistically significant and corresponds to about 3% error reduction.8 We would expect a larger
improvement in practice, because normally a parser trained on the WSJ is applied to the data from
a different domain. In this case a probabilistic model is generally more uncertain, i.e. the entropy of
the distribution in the list is larger. Therefore, the difference between MAP and MBR predictions
is also expected to be larger.

7 Conclusions

This paper considers the application of MBR decoding approaches to the natural language parsing
task. We proposed techniques for full MBR decoding on the basis of risk estimates from candidate
lists in both the constituent and dependency parsing tasks. Our approaches do not place any
constraints on the probabilistic models used, thus allowing it to be used with any generative or
discriminative parsing method. The proposed decoding methods achieve significant improvement
over MAP decoding.

We would expect even better results with MBR-decoding if larger n-best lists were used. The
n-best parsing algorithm [10] can be used to efficiently produce candidate lists as large as 106 parse
trees with the model of [2]. It is also worth noting that runtime of MBR-decoding algorithms is
not significantly affected by the size of candidate lists.

7The software implementation of [1] is publicly available. We used the release of May, 2006.
8If we use the upper bound of 97% suggested in [1], rather than 100%, then the error reduction is 5%. 97% is

motivated by inter-annotator agreement for the WSJ dataset.

7

References

[1] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discriminative
reranking. In Proc. 43rd Meeting of Association for Computational Linguistics, pages 173–180,
Ann Arbor, MI, 2005.

[2] Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
University of Pennsylvania, Philadelphia, PA, 1999.

[3] Michael Collins and Nigel Duffy. Convolution Kernels for Natural Language. In T. G. Diet-
terich, S. Becker, and Z. Ghahramani, editors, Adv. Neural. Inform. Process Syst., volume 14,
pages 625–632. MIT Press, 2001.

[4] Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels
over discrete structures and the voted perceptron. In Proc. 40th Meeting of Association for

Computational Linguistics, pages 263–270, Philadelphia, PA, 2002.

[5] Michael Collins and Terry Koo. Discriminative reranking for natural language parsing. Com-

putational Linguistics, 31(1):25–69, 2005.

[6] Jason Eisner. Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th International Conference on Computational Linguistics, Copenhagen,
Denmark, 1996.

[7] Joshua Goodman. Parsing algorithms and metrics. In Proc. 34th Meeting of the Association

for Computational Linguistics, pages 177–183, Santa Cruz, CA, 1996.

[8] James Henderson. Inducing history representations for broad coverage statistical parsing. In
Proc. joint meeting of North American Chapter of the Association for Computational Linguis-

tics and the Human Language Technology Conf., pages 103–110, Edmonton, Canada, 2003.

[9] James Henderson and Ivan Titov. Data-defined kernels for parse reranking derived from
probabilistic models. In Proc. 43rd Meeting of Association for Computational Linguistics,
Ann Arbor, MI, 2005.

[10] Liang Huang and David Chiang. Better k-best parsing. In Proc. 9th Int. Workshop on Parsing

Technologies, Vancouver, Canada, 2005.

[11] R. Hudson. Word Grammar. Basil Blackwell, Oxford, 1984.

[12] Terry Koo and Michael Collins. Hidden-variable models for discriminative reranking. In Proc.

Conf. on Empirical Methods in Natural Language Processing, Vancouver, B.C., Canada, 2005.

[13] Shankar Kumar and William Byrne. Minimum bayes-risk decoding for statistical machine
translation. In Proceedings of the Human Language Technology Conference and Meeting of

the North American Chapter of the Association for Computational Linguistics, Boston, MA,
2004.

[14] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large an-
notated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

[15] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of Human Language Technology Con-

ference and Conference on Empirical Methods in Natural Language Processing, pages 523–530,
Vancouver, British Columbia, Canada, October 2005.

[16] Alessandro Moschitti. A study on convolutional kernels for shallow semantic parsing. In Proc.

42nd Meeting of the Association for Computational Linguistics, Barcelona, Spain, 2004.

8

[17] John C. Platt. Probabilistic outputs for support vector machines and comparision to regular-
ized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 61–74. MIT Press, 1999.

[18] Andreas Stolcke, Yochai Konig, and Mitchel Weintraub. Explicit word error minimization
in n-best list rescoring. In Proc. of 5th European Conference on Speech Communication and

Technology, pages 163–165, Rhodes, Greece, 1997.

[19] R. E. Tarjan. Finding optimal branchings. Networks, 7:25–35, 1977.

[20] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proc. 21st Int.

Conf. on Machine Learning, pages 823–830, Banff, Alberta, Canada, 2004.

[21] Alexander Yeh. More accurate tests for the statistical significance of the result differences.
In Proc. 17th International Conf. on Computational Linguistics, pages 947–953, Saarbruken,
Germany, 2000.

9

