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Motivation for synchronous parsing

Syntax and semantics are separate structures, with
different generalisations

Sub Obj
John broke the vase.
A0 A1

Sub
The vase broke.

A1
Syntax and semantics are highly correlated, and
therefore should be learned jointly

Synchronous parsing provides a single joint model of two
separate structures
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Motivation for latent variables

The correlations between syntax and semantics are partly
lexical, and independence assumptions are hard to
specify a priori
The dataset is new, and there was little time for feature
engineering

Latent variables provide a powerful mechanism for
discovering correlations both within and between the
structures
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The Probability Model

A generative, history-based model
of the joint probability
of syntactic and semantic synchronous derivations
synchronised at each word.
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Syntactic and semantic dependencies example

ROOT Hope seems doomed to failure

P(Td , Ts)
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Syntactic and semantic derivations

Define two separate derivations, one for the syntactic
structure and one for the semantic structure.

P(Td , Ts) = P(D1
d , ..., Dmd

d , D1
s , ..., Dms

s )

Actions of an incremental shift-reduce style parser similar
to MALT [Nivre et al., 2006]
Semantic derivations are less constrained, because their
structures are less constrained
Assumes each dependency structure is individually
planar (“projective”)
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Synchronisation granularity

Use an intermediate synchronisation granularity, between full
predications and individual actions.

Ct = D
bt

d
d , ..., D

et
d

d , shiftt , Dbt
s

s , ..., Det
s

s , shiftt

P(D1
d , ..., Dmd

d , D1
s , ..., Dms

s ) = P(C1, . . . , Cn)

Synchronisation at each word prediction
Results in one shared input queue
Allows two separate stacks
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Synchronous parsing example

ROOT Hope

P(C1)
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Synchronous parsing example

ROOT Hope seems

P(C1) P(C2|C1)
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Synchronous parsing example

ROOT Hope seems doomed

P(C1) P(C2|C1) P(C3|C1, C2)
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Synchronous parsing example

ROOT Hope seems doomed to

P(C1) P(C2|C1) P(C3|C1, C2) P(C4|C1, C2, C3)
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Synchronous parsing example

ROOT Hope seems doomed to failure

P(C1) P(C2|C1) P(C3|C1, C2) P(C4|C1, C2, C3) P(C5|C1, C2, C3, C4)
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Derivation example

ROOT Hope
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Derivation example

ROOT Hope seems doomed to failure
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Projectivisation

Allows crossing links between syntax and semantics
Use the HEAD method [Nivre et al., 2006] to projectivise
syntax
Use syntactic dependencies to projectivise semantic
dependencies
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Projectivising semantic dependencies

w1 w2 w3 w4 w5

A B

C

w1 w2 w3 w4 w5

C

B

A/C
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The Machine Learning Method

Synchronous derivations are modeled with an Incremental
Sigmoid Belief Network (ISBN).

ISBNs are Dynamic Bayesian Networks for modeling
structures,
with vectors of latent variables annotating derivation
states
that represent features of the derivation history.
Use the neural network approximation of ISBNs [Titov and
Henderson, ACL 2007] (“Simple Synchrony Netowrks”)
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Statistical dependencies in the ISBN

Connections between latent states reflect locality in the
syntactic or semantic structure,
thereby specifying the domain of locality for conditioning
decisions
Explicit conditioning features of the history are also
specified

D

SS

DD

S

t−1t−c

t−c t−1 t

t
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Connections between latent states

Distinguish between syntactic states and semantic states
of the derivation
Connections both within and between types of states

Recent Current Syn-Syn Srl-Srl Syn-Srl Srl-Syn
Next Next + + + (+)
Top Top + + + (+)
RgtDepTop Top + +
LftDepTop Top + +
HeadTop Top + +
LftDepNext Top + +
Next Top +
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Explicit conditioning features

State Syntax
LEX POS DEP

Next + +
SynTop + +
SynTop - 1 +
Head SynTop +
RgtD SynTop +
LftD SynTop +
LftD Next +

State Semantics
LEX POS DEP SENSE

Next + + +
SemTop + + +
SemTop - 1 + +
Head SemTop + +
RgtD SemTop +
LftD SemTop +
LftD Next +
A0-A5 SemTop +
A0-A5 Next +
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The Evaluation

Two models reported
Submitted model:

vocabulary of 1083 words
latent vector of 60 features
no semantics-to-syntax latent state connections
a form of Minimum Bayes Risk (MBR) decoding for syntax

Larger model:
vocabulary of 4392 words
latent vector of 80 features
includes semantics-to-syntax latent state connections
decoding optimises joint probability
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Results

Syntactic Semantic Overall
LAS P R F1 F1

Submitted
WSJ 87.8 79.6 66.2 72.3 80.2
Brn 80.0 66.6 55.3 60.4 70.3
WSJ+Brn 86.9 78.2 65.0 71.0 79.1

Large
WSJ 88.5 80.4 69.2 74.4 81.5
Brn 81.0 68.3 57.7 62.6 71.9
WSJ+Brn 87.6 79.1 67.9 73.1 80.5

Larger model does better (1.5%) than smaller submitted
model
Large model would be fifth overall
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MBR versus joint inference

Syntactic
LAS

Submitted
Dev 86.1

Joint optimisation
Dev 85.5
Large (joint optimisation)
Dev 86.5

MBR for syntax helps a bit (0.6%)
but not as much as the large model (1.0%)
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Additional experiments

Removing latent connections between syntax and
semantics reduced semantic performance by 3.5%,
indicating the importance of the latent variables for
finding the correlations between these structures

When evaluated only on syntactic dependencies, the
submitted model performs slighly (0.2%) better than a
model trained only on syntactic depedencies, indicating
that training a joint model does not harm performance of
the syntax component, and may help
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Conclusions

Synchronous derivations are an effective way to build joint
models of separate structures
The latent features of ISBNs help find correlations between
structures
ISBNs extend well to more complex automata than
push-down automata
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Current Work

Derivations which projectivise on-line (81.8% overall
F-measure, 1.3% improvement)
Better feature engineering, particularly for semantic parse
decisions
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Projectivising semantic dependencies

An arc is un-crossed by replacing its argument a with a’s
syntactic head and noting this change in the arc label.
This change is repeated as necessary using a heuristic
greedy search.
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Decoding

Beam search used to search for the most probable
derivation
For submitted model, chose syntactic structure by
summing over beam of semantic structures
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