A Latent Variable Model of Synchronous Parsing for Syntactic and Semantic Dependencies

James Henderson ¹ Paola Merlo ² Gabriele Musillo ^{1 2} Ivan Titov ³

¹Dept Computer Science, Univ Geneva ²Dept Linguistics, Univ Geneva ³Dept Computer Science, Univ Illinois at U-C

CoNLL 2008

Outline

- A Latent Variable Model of Synchronous Parsing
- Probability Model
- Machine Learning Method
- Evaluation

Motivation for synchronous parsing

 Syntax and semantics are separate structures, with different generalisations

```
Sub Obj
John broke the vase.
A0 A1
Sub
The vase broke.
A1
```

- Syntax and semantics are highly correlated, and therefore should be learned jointly
- Synchronous parsing provides a single joint model of two separate structures

Motivation for latent variables

- The correlations between syntax and semantics are partly lexical, and independence assumptions are hard to specify a priori
- The dataset is new, and there was little time for feature engineering
- Latent variables provide a powerful mechanism for discovering correlations both within and between the structures

Outline

- A Latent Variable Model of Synchronous Parsing
- Probability Model
- Machine Learning Method
- Evaluation

Outline

- A Latent Variable Model of Synchronous Parsing
- Probability Model
- Machine Learning Method
- Evaluation

The Probability Model

- A generative, history-based model
- of the joint probability
- of syntactic and semantic synchronous derivations
- synchronised at each word.

Syntactic and semantic dependencies example

Syntactic and semantic derivations

Define **two separate derivations**, one for the syntactic structure and one for the semantic structure.

$$P(T_d, T_s) = P(D_d^1, ..., D_d^{m_d}, D_s^1, ..., D_s^{m_s})$$

- Actions of an incremental shift-reduce style parser similar to MALT [Nivre et al., 2006]
- Semantic derivations are less constrained, because their structures are less constrained
- Assumes each dependency structure is individually planar ("projective")

Synchronisation granularity

Use an intermediate synchronisation granularity, between full predications and individual actions.

$$C^t = D_d^{b_d^t}, ..., D_d^{e_d^t}, shift_t, D_s^{b_s^t}, ..., D_s^{e_s^t}, shift_t$$
 $P(D_d^1, ..., D_d^{m_d}, D_s^1, ..., D_s^{m_s}) = P(C^1, ..., C^n)$

- Synchronisation at each word prediction
- Results in one shared input queue
- Allows two separate stacks

ROOT Hope

 $P(C^1)$

$$P(C^1) \mathbf{P}(\mathbf{C^2}|\mathbf{C^1})$$

$$P(C^1) P(C^2|C^1) P(C^3|C^1, C^2) P(C^4|C^1, C^2, C^3)$$

Derivation example

ROOT Hope

Derivation example

ROOT Hope seems

Projectivisation

- Allows crossing links between syntax and semantics
- Use the HEAD method [Nivre et al., 2006] to projectivise syntax
- Use syntactic dependencies to projectivise semantic dependencies

Projectivising semantic dependencies

Outline

- A Latent Variable Model of Synchronous Parsing
- Probability Model
- Machine Learning Method
- Evaluation

The Machine Learning Method

Synchronous derivations are modeled with an Incremental Sigmoid Belief Network (**ISBN**).

- ISBNs are Dynamic Bayesian Networks for modeling structures,
- with vectors of latent variables annotating derivation states
- that represent features of the derivation history.
- Use the neural network approximation of ISBNs [Titov and Henderson, ACL 2007] ("Simple Synchrony Netowrks")

Statistical dependencies in the ISBN

- Connections between latent states reflect locality in the syntactic or semantic structure,
- thereby specifying the domain of locality for conditioning decisions
- Explicit conditioning features of the history are also specified

Connections between latent states

- Distinguish between syntactic states and semantic states of the derivation
- Connections both within and between types of states

Recent	Current	Syn-Syn	Srl-Srl	Syn-Srl	Srl-Syn
Next	Next	+	+	+	(+)
Тор	Top	+	+	+	(+)
RgtDepTop	Top	+	+		
LftDepTop	Top	+	+		
HeadTop	Top	+	+		
LftDepNext	Top	+	+		
Next	Top	+			

Explicit conditioning features

				State	Semantics			
State	5	Synta	ax		LEX	POS	DEP	SENSE
	LEX	POS	DEP	Next	+	+		+
Next	+	+		SemTop	+	+		+
SynTop	+	+		SemTop - 1	+	+		
SynTop - 1		+		Head SemTop	+		+	
Head SynTop	+			RgtD SemTop			+	
RgtD SynTop			+	LftD SemTop			+	
LftD SynTop			+	LftD Next			+	
LftD Next			+	A0-A5 SemTop		+		
	1			A0-A5 Next		+		

Outline

- A Latent Variable Model of Synchronous Parsing
- Probability Model
- Machine Learning Method
- Evaluation

The Evaluation

- Two models reported
- Submitted model:
 - vocabulary of 1083 words
 - latent vector of 60 features
 - no semantics-to-syntax latent state connections
 - a form of Minimum Bayes Risk (MBR) decoding for syntax
- Larger model:
 - vocabulary of 4392 words
 - latent vector of 80 features
 - includes semantics-to-syntax latent state connections
 - decoding optimises joint probability

Results

	Syntactic	S	emanti	Overall	
	LAS	Р	R	F1	F1
Submitted					
WSJ	87.8	79.6	66.2	72.3	80.2
Brn	80.0	66.6	55.3	60.4	70.3
WSJ+Brn	86.9	78.2	65.0	71.0	79.1
Large					
WSJ	88.5	80.4	69.2	74.4	81.5
Brn	81.0	68.3	57.7	62.6	71.9
WSJ+Brn	87.6	79.1	67.9	73.1	80.5

- Larger model does better (1.5%) than smaller submitted model
- Large model would be fifth overall

MBR versus joint inference

	Syntactic			
	LAS			
	Submitted			
Dev	86.1			
Joint optimisation				
Dev	85.5			
Large (joint optimisation)				
Dev	86.5			

- MBR for syntax helps a bit (0.6%)
- but not as much as the large model (1.0%)

Additional experiments

- Removing latent connections between syntax and semantics reduced semantic performance by 3.5%, indicating the importance of the latent variables for finding the correlations between these structures
- When evaluated only on syntactic dependencies, the submitted model performs slighly (0.2%) better than a model trained only on syntactic depedencies, indicating that training a joint model does not harm performance of the syntax component, and may help

Conclusions

- Synchronous derivations are an effective way to build joint models of separate structures
- The latent features of ISBNs help find correlations between structures
- ISBNs extend well to more complex automata than push-down automata

Current Work

- Derivations which projectivise on-line (81.8% overall F-measure, 1.3% improvement)
- Better feature engineering, particularly for semantic parse decisions

Acknowledgements

This work was partly funded by

- European Community FP7 project CLASSiC (www.classic-project.org),
- a Swiss NSF grant,
- two Swiss NSF fellowships.

Part of this work was done when G. Musillo was visiting MIT/CSAIL.

Projectivising semantic dependencies

- An arc is un-crossed by replacing its argument a with a's syntactic head and noting this change in the arc label.
- This change is repeated as necessary using a heuristic greedy search.

Decoding

- Beam search used to search for the most probable derivation
- For submitted model, chose syntactic structure by summing over beam of semantic structures