Introduction

Natural communication between humans is a highly interactive process.
- Speakers choose an utterance which they believe has high chance of achieving their communicative goal.
- They will then monitor the listener’s behavior to see whether this goal is actually being achieved and give feedback when necessary.

Goal: improve interactive NLP systems by adding monitoring and feedback capability in real time.

The GIVE domain

- Users have to solve a puzzle in a 3D environment.
- They can interact with objects in the world (e.g. click on buttons) and move freely in space.
- NLG systems guide users by generating instructions, including referring expressions (REs) for objects in the environment.
- Grounding problem: Systems have to predict (mis)understanding of a referent and prevent mistakes by providing corrective feedback.

Our research question

Given a referring expression, how do we predict what the user has understood as its referent?

Model of RE resolution

When receiving an instruction containing a referring expression r at a given world state s, the user resolves r to an object a. The user then moves towards a, exhibiting behavior σ. A probabilistic model over possible referents $p(a|r,s,\sigma) \propto p_{\text{sem}}(a|r,s) \cdot p_{\text{obs}}(a|\sigma)$

- p_{sem} and p_{obs} are separately trained, log-linear models.
- Both can generalize to unseen worlds.
- Features:
 - p_{sem}: semantic properties, potential sources of confusion, and visual salience
 - p_{obs}: distance, angle, visual salience and their evolution in time

Data

- Interaction corpora from the GIVE challenges, consisting of
 - automatically generated instructions
 - recorded user movements and actions
- Test data: 5028 episodes from the GIVE-2 challenge
- Training data: 3414 episodes from the GIVE-2.5 challenge
- Different virtual worlds, users & NLG systems between training/test data

Episode

An episode consists of the events between an instruction and the user’s action.

Results

Prediction accuracy

Given r, s, and σ until some $t > t_0$, predict the referent understood by the user: $\arg \max_\alpha p(a|r,s,\sigma)$

Feedback decision

Given r, s, and σ until some $t > t_0$, decide to give feedback if $p(a) - p(a') > \theta$ for some object $a \neq a'$ (here $\theta = 0.1$).

Feedback should be provided if the user was going to make a mistake, i.e. $a \neq a'$.

Conclusions and Future Work

- Our model predicts how a user is resolving the REs generated by an interactive system.
- The model updates initial estimate continuously based on observations.
- Next steps:
 - more time-aware model for p_{obs}
 - evaluate model in an end-to-end situated NLG system
 - explore use in other domains, e.g. navigation systems or less situated environments.