Online Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies

Ivan Titov
University of Illinois at Urbana-Champaign

James Henderson, Paola Merlo, Gabriele Musillo
University of Geneva
Motivation / Problem Statement

- NLP applications will require a shallow representation of meaning
 - Often shallow semantic structures can be regarded as labeled directed graphs

Can we apply methods for syntactic dependency parsing to predict these trees?
Motivation / Problem Statement

- NLP applications will require a shallow representation of meaning
 - Often shallow semantic structures can be regarded as labeled directed graphs

Syntactic structure
- Many crossing arcs (‘non-planarity’)

Semantic structure
- Often little or no crossing links

Sequa makes and repairs jet engines
Motivation / Problem Statement

- NLP applications will require a shallow representation of meaning
 - Often shallow semantic structures can be regarded as labeled directed graphs

 - How can we deal with more general graphs representing semantic structures?
 - How can we construct an effective semantic parser on the basis of an existing syntactic parser?
Outline

- Motivation / Problem Statement
- Background
 - Dependency parsing
 - Properties of dependency graphs
- Non-Planar Parsing using Swapping
- Synchronous Parsing of Semantic and Syntactic Dependencies
 - Synchronization
 - Statistical Model
- Experiments
- Conclusions and Future Directions
Dependency Parsing Problem

- Parsing: given sentence \(x \in X \) predict structure \(y \in Y \):
 \[
 \hat{y} = \arg\max_y F(y, x|w)
 \]

- Graph-based methods: assume that features factorize over subgraphs of \(y \) (e.g., edges) [Eisner, 96; McDonald et al., 05]

- Transition-based methods [Yamada and Matsumoto, 03; Nivre et al., 04]:
 - Define derivation order for structures, i.e. mapping from \(y \) to sequences of decisions \((d_1, \ldots, d_{n(y)}) \)
 - Learn to score individual decision given preceding decisions:
 \[
 F(y, x|w) = \sum_{i=1}^{n(y)} f(d_i|d_1, \ldots, d_{i-1}, x, w)
 \]
 - Decode greedily:
 \[
 \hat{d}_i = \arg\max_{d_i} f(d_i|\hat{d}_1, \ldots, \hat{d}_{i-1}, x, w)
 \]
 - Model estimated on a labeled dataset (treebank)
 - Beam-search can be used instead of greedy decoding
 - That will be the main focus of the talk
Properties of Semantic Structures

- Semantic structures are not trees
 - Graph-based (GB) methods based on maximum spanning tree algorithms are not directly applicable
- Semantic structures are not planar
 - Definition: planar graphs can be drawn in the semi-plane above the sentence without any two arcs crossing and without changing the order of words

```
Sequa makes and repairs jet engines
```
Properties of Semantic Structures

- Semantic structures are not trees
 - Graph-based (GB) methods based on maximum spanning tree algorithms are not directly applicable
- Semantic structures are not planar
 - **Definition**: planar graphs can be drawn in the semi-plane above the sentence without any two arcs crossing and without changing the order of words
 - Most transition-based (TB) algorithms handle only planar graphs
- Related work:
 - [Attardi, 06]: TB method with extended derivation order to handle non-planarity
 - [Nivre, 08]: Assumes that a structure can be made planar by changing order of words (not true for general non-tree graphs)
 - ...
Properties of Semantic Structures

- Semantic structures are not trees
 - Graph-based (GB) methods based on maximum spanning tree algorithms are not directly applicable.
- Semantic structures are not planar
 - Definition: planar graphs can be drawn in the semi-plane above the sentence without any two arcs crossing and without changing the order of words.
- Most transition-based (TB) algorithms handle only planar graphs

Related work:
- [Attardi, 06]: TB method with extended derivation order to handle non-planarity
- [Nivre, 08]: Assumes that a structure can be made planar by changing order of words (not true for general non-tree graphs)
- ...

We will propose a very simple technique to extend standard TB methods to handle non-planar and not-tree structured graphs.
Outline

- Motivation / Problem Statement
- Background
 - Dependency parsing
 - Properties of dependency graphs
- Non-Planar Parsing using Swapping
- Synchronous Parsing of Semantic and Syntactic Dependencies
 - Synchronization
 - Statistical Model
- Experiments
- Conclusions and Future Directions
Derivation order \([Nivre, 04]\)

- **State of the parser after steps** \((d_1, \ldots, d_{i-1})\) is characterized by:
 - current stack \(S\) (\(w_j\) – word on top of the stack)
 - a queue \(I\) of remaining input words (\(w_k\) – next input word)
 - partial dependency structure defined by \((d_1, \ldots, d_{i-1})\)

- **New decision** \(d_i\) can be
 - \(\text{LeftArc}_r\) - adds a labeled dependency arc \(w_j \xrightarrow{r} w_k\)
 - \(\text{RightArc}_r\) - adds a labeled dependency arc \(w_j \xrightarrow{r} w_k\)
 - \(\text{Shift}\) - moves \(w_k\) from queue to the stack
 - \(\text{Reduce}\) - remove \(w_j\) from the stack

- Terminates when the queue is empty
Handling non-planar structures

- \[\text{[Nivre, 04]}\] order cannot handle non-planar structures:
 - All the arcs are created between top of the stack and front of queue
 - Words are stored in the stack in the same order as they appear in the sentence

- A single new decision:
 - Swap - swaps 2 top words in the stack

 Stack before: \[S = [\ldots, w_m, w_j]\]
 Stack after: \[S = [\ldots, w_j, w_m]\]
Example

Example: Sequa makes and repairs jet engines.
Example

- Partial Structure:

 Sequa makes and repairs jet engines

 $S = \left[\right]$

 $l = \left[\text{Sequa makes and } \right]$

- Next action: Shift
Example

- Partial Structure:

\[\text{Sequa makes and repairs jet engines} \]

- \[S = [\text{Sequa}] \]

- \[l = [\text{makes and repairs}] \]

- Next action: \(\text{LeftArc}_\text{AGENT} \)
Example

- Partial Structure:

 > Sequa makes and repairs jet engines

 - $S = \text{[Sequa]}$
 - $l = \text{[makes and repairs]}$

- Next action: *Shift*
Example

- Partial Structure:

Sequa makes and repairs jet engines

- S = [Sequa makes]
- l = [and repairs jet engines]

- Next action: Shift
Example

- Partial Structure:

Sequa makes and repairs jet engines

- $S = [\text{Sequa makes and}]$
- $l = [\text{repairs jet engines}]$

- Next action: Reduce
Example

- Partial Structure:

\[S = [\text{Sequa makes }] \]

\[I = [\text{repairs jet engines }] \]

- Next action: Swap

Stalled if without swap:
- \text{repairs} needs an arc to Sequa
- but \text{makes} cannot be removed from stack
Example

- Partial Structure:

 - $S = [\text{makes Sequa}]$
 - $I = [\text{repairs jet engines}]$

- Next action: $\text{LeftArc}_{\text{AGENT}}$
Example

- Partial Structure:

 \[S = \text{[makes Sequa]} \]
 \[l = \text{[repairs jet engines]} \]

- Next action: Reduce
Example

- Partial Structure:

 - $S = \text{[makes]}$
 - $I = \text{[repairs jet engines]}$

- Next action: Shift
Example

- Partial Structure:

 - $S = \{ \text{makes repairs} \}$
 - $I = \{ \text{jet engines} \}$

- Next action: *Shift*
Example

- Partial Structure:

- $S = [\text{makes repairs jet}]$

- $I = [\text{engines}]$

- Next action: Reduce
Example

- Partial Structure:

- $S = \text{[makes repairs]}$

- $l = \text{[engines]}$

- Next action: $\text{RightArc}_{\text{PATIENT}}$
Example

- Partial Structure:

 - **S = [makes repairs]**
 - **l = [engines]**

 - Next action: *Reduce*
Example

- Partial Structure:

- \(S = [\text{makes}] \)

- \(l = [\text{engines}] \)

- Next action: \(\text{RightArc}_{\text{PATIENT}} \)
Example

- Partial Structure:

 - $S = [\text{makes}]$
 - $I = [\text{engines}]$

- Next action: Shift
Example

- Partial Structure:

- $S = [\text{makes engines}]$

- $l = []$

- Next action: *Stop*
Canonical orders

- The algorithm allows the same structure to be parsed multiple ways
 - Summing over all the possible derivation when parsing is not feasible
 - Instead, models are trained to produce derivations in a canonical way
- In other words, canonical orders define how derivations should be produced for the training set
- We consider two canonical derivations which differ in when swapping is done
 - last-resort: Swap is used as a last resort when no other operation is possible
 - exhaustive: Swap is used pre-emptively
Last-Resort ordering

- Swap is used as a last resort when no operation is possible
- Drawback: not all the structures parsable with swapping have a last-resort derivation
 - in CoNLL-2008 dataset 2.8% fewer structures are parsable with last-resort ordering
 - An example of such a structure:

Suddenly CDC and DEC have products

- Advantage: this canonical derivation is predictable and, therefore, supposedly easier to learn
Exhaustive ordering

- **Algorithm for preemptive swapping:**
 - Ordering follows standard planar parser ordering until no other operation except *Shift* and *Swap* are possible
 - Compute the ordered list of positions of words in the queue to which current top of the stack \(w_j \) will be connected
 - Compute a similar list for word \(w_m \) under the top of the stack
 - Swap if \(w_m \)'s list precedes \(w_j \)'s list in their lexicographical order

\[S = [\text{Suddenly} \ CDC] \]
\[I = [\text{DEC} \ldots] \]

List for ‘Suddenly’: \(\{5\} \)

List for ‘CDC’: \(\{5, 6\} \implies \text{Swap} \]
Exhaustive ordering

- **Algorithm for preemptive swapping:**
 - Ordering follows standard planar parser ordering until no other operation except *Shift* and *Swap* are possible
 - Compute the ordered list of positions of words in the queue to which current top of the stack w_j will be connected
 - Compute a similar list for word w_m under the top of the stack
 - Swap if w_m’s list precedes w_j’s list in their lexicographical order

- **Theorem** *If the graph is parsable with the defined set of operations then the exhaustive ordering is guaranteed to find a derivation*
 - See the paper for the proof sketch
Not all the non-planar graphs are parsable
- In CoNLL-2008 ST dataset only 1% of semantic structures are not parsable whereas 44% are not planar (i.e., require swapping)

Among common linguistic structures requiring Swap are coordinations
- E.g., “Sequa makes, repairs and sells engines”

A frequent example of an unparsable structure:
- Funds also might buy and sell
 - 2 predicates sharing 3 arguments
Structures Parsable with Swapping

- Any structures with isolated pairs of crossing arcs are parsable but they are more powerful than that

Theorem A graph cannot be parsed with the defined set of parsing operations iff the graph contains at least one of the subgraphs presented below:

- the unspecified arc end points can be anywhere strictly following those specified
- circled pairs of endpoints can be either a single word or two distinct words

See the paper for the proof sketch
Outline

- Motivation / Problem Statement
- Background
 - Dependency parsing
 - Properties of dependency graphs
- Non-Planar Parsing using Swapping
- Synchronous Parsing of Semantic and Syntactic Dependencies
 - Synchronization
 - Statistical Model
- Experiments
- Conclusions and Future Directions
Synchronization [Henderson et al., 2008]

- We define **two separate derivations**: one for semantics, one for syntax
- Instead of using pipelines we synchronize these two derivations
 - joint learning and joint inference
Example:

Sequa makes and repairs jet engines
Synchronization

- Example:

Sequa **makes** and **repairs** jet engines
Synchronization

- Example:

Sequa makes and repairs jet engines

Semantic structure

Syntactic structure
Synchronization

Example:

Sequa makes and repairs jet engines

D^2_{syn}
Synchronization

Example:

Sequa makes and repairs jet engines

Semantics:

Syntactics:
Synchronization

Example:

Sequa makes and repairs jet engines

Semantic structure

Syntactic structure
Synchronization

Example:

Sequa makes and repairs jet engines
Synchronization

Example:

Sequa makes and repairs jet engines
Synchronization

- Example:

Sequa makes and repairs jet engines

Semantic structure

Syntactic structure
Synchronization

Example:

Sequa makes and repairs jet engines
Synchronization

Example:

Sequa makes and repairs jet engines
Following [Henderson, et al., 08], the synchronous derivations are modeled with Incremental Sigmoid Belief Networks (ISBNs) [Titov and Henderson, 07]

- previously successfully applied to constituent and dependency syntactic parsing

- Vectors of latent variables are associated with each parsing decision

- Each vector is connected with previous vectors by a pattern of interconnections determined by the previous decisions
Outline

- Motivation / Problem Statement
- Background
 - Dependency parsing
 - Properties of dependency graphs
- Non-Planar Parsing using Swapping
- Synchronous Parsing of Semantic and Syntactic Dependencies
 - Synchronization
 - Statistical Model
- Experiments
- Conclusions and Future Directions
Empirical Evaluation

- CoNLL-2008 Shared Task data [Surdeanu et al., 08], merged
 - dependency transformation of Penn Treebank WSJ (syntax)
 - dependency representation of Propbank and Nombank (semantics)

- Data: 39,279/1,334/2,824 sentences for training/development/testing

- Systems
 - Our models
 - exhaustive order
 - last-resort order
 - planar order (can only process projective parts of derivations)
 - [Henderson et al., 08] planarisation: a modification of [Nivre and Nilsson, 05] method for semantic graphs (HEAD)
 - Crossing links are removed and encoded in labels of remaining arcs
 - Model structure and estimation methods are kept constant
Results on Development Set

<table>
<thead>
<tr>
<th>Technique</th>
<th>CoNLL Measures</th>
<th>Crossing Paris (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem FI</td>
</tr>
<tr>
<td>Last resort</td>
<td>86.6</td>
<td>76.2</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>86.8</td>
<td>76.0</td>
</tr>
<tr>
<td>HEAD</td>
<td>86.7</td>
<td>73.3</td>
</tr>
<tr>
<td>Planar</td>
<td>85.9</td>
<td>72.8</td>
</tr>
</tbody>
</table>
Results on Development Set

<table>
<thead>
<tr>
<th>Technique</th>
<th>CoNLL Measures</th>
<th>Crossing Paris (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem FI</td>
</tr>
<tr>
<td>Last resort</td>
<td>86.6</td>
<td>76.2</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>86.8</td>
<td>76.0</td>
</tr>
<tr>
<td>HEAD</td>
<td>86.7</td>
<td>73.3</td>
</tr>
<tr>
<td>Planar</td>
<td>85.9</td>
<td>72.8</td>
</tr>
</tbody>
</table>
Results on Development Set

<table>
<thead>
<tr>
<th>Technique</th>
<th>CoNLL Measures</th>
<th>Crossing Pairs (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem F1</td>
</tr>
<tr>
<td>Last resort</td>
<td>86.6</td>
<td>76.2</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>86.8</td>
<td>76.0</td>
</tr>
<tr>
<td>HEAD</td>
<td>86.7</td>
<td>73.3</td>
</tr>
<tr>
<td>Planar</td>
<td>85.9</td>
<td>72.8</td>
</tr>
</tbody>
</table>
Results on Development Set

<table>
<thead>
<tr>
<th>Technique</th>
<th>CoNLL Measures</th>
<th>Crossing Pairs (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem F1</td>
</tr>
<tr>
<td>Last resort</td>
<td>86.6</td>
<td>76.2</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>86.8</td>
<td>76.0</td>
</tr>
<tr>
<td>HEAD</td>
<td>86.7</td>
<td>73.3</td>
</tr>
<tr>
<td>Planar</td>
<td>85.9</td>
<td>72.8</td>
</tr>
</tbody>
</table>

The model is generative and, therefore, decisions are not conditioned on future words – a likely reason why no improvement from using exhaustive strategy.
Test Set Results

<table>
<thead>
<tr>
<th>Model</th>
<th>CoNLL Measures</th>
<th>Crossing Pairs (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem FI</td>
</tr>
<tr>
<td>Johanssen</td>
<td>89.3</td>
<td>81.6</td>
</tr>
<tr>
<td>Ciaramita</td>
<td>87.4</td>
<td>78.0</td>
</tr>
<tr>
<td>Che</td>
<td>86.7</td>
<td>78.5</td>
</tr>
<tr>
<td>Zhao</td>
<td>87.7</td>
<td>76.7</td>
</tr>
<tr>
<td>This paper</td>
<td>87.5</td>
<td>76.1</td>
</tr>
<tr>
<td>Henderson+</td>
<td>87.6</td>
<td>73.1</td>
</tr>
<tr>
<td>Lluis</td>
<td>85.8</td>
<td>70.3</td>
</tr>
</tbody>
</table>

- 3% improvement over the baseline on semantics graphs
- However, does not outperform reranking or ensemble techniques
Test Set Results

<table>
<thead>
<tr>
<th>Model</th>
<th>CoNLL Measures</th>
<th>Crossing Pairs (Sem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syn LAS</td>
<td>Sem F1</td>
</tr>
<tr>
<td>Johanssen</td>
<td>89.3</td>
<td>81.6</td>
</tr>
<tr>
<td>Ciaramita</td>
<td>87.4</td>
<td>78.0</td>
</tr>
<tr>
<td>Che</td>
<td>86.7</td>
<td>78.5</td>
</tr>
<tr>
<td>Zhao</td>
<td>87.7</td>
<td>76.7</td>
</tr>
<tr>
<td>This paper</td>
<td>87.5</td>
<td>76.1</td>
</tr>
<tr>
<td>Henderson+</td>
<td>87.6</td>
<td>73.1</td>
</tr>
<tr>
<td>Lluis</td>
<td>85.8</td>
<td>70.3</td>
</tr>
</tbody>
</table>

- Recent results: 3rd result in CoNLL-2009 Shared task (7 languages)
Conclusions

- Proposed a simple modification to handle semantic graphs with transition-based parsers
 - though not powerful enough to process all the semantic graphs it is able to handle vast majority
 - proposed and analyzed two algorithms for canonical derivation induction
 - theoretically characterized the class of parsable structures

- Showed improvements over previous methods

- Demonstrated state-of-the-art results without ensemble techniques or pipelines

- Future directions: applying this approach to parsing of language with highly non-planar syntactic structures