Lecture 3: Markov Models as Language Model

Ivan Titov
ILLC, Universiteit van Amsterdam

April 9, 2014

Recap: Spelling correction

Context-Dependent models

- Typos in text: Three is a boy on the roof
- ► Context of words : a word is known by the company it keeps Consider whole sentences/ parts of sentences.

How did we approach the problem?

The Noisy-Channel metaphor at sentence level

$$O = o_1, \ldots, o_n$$
 $C = w_1, \ldots, w_n$

Two Models: Task Model and Language Model

$$\arg \max_{w_1^n \in \Gamma} P(w_1^n \mid o_1^n) = \arg \max_{w_1^n \in \Gamma} P(o_1^n \mid w_1^n) P(w_1^n)$$

$P(o_1^n \mid w_1^n)$ Task Model

- ► How likely is o_1^n as a result of typos in w_1^n ?
- What plays a role: knowledge of keyboard, knowledge of ins/del/sub/tran!

$P(w_1^n)$ Language Model

- ► How likely is it that w_1^n is a sentence in the language?
- Here, knowledge of the language (word order,syntax, semantics can be included..)

Division of labor: language model and task model

Independence Assumptions (Task model)

Task Model We make the assumption that misspelling in a word is independent of misspellings in other words (a reasonable assumption!)

$$P(o_1^n \mid w_1^n) \approx \prod_{i=1}^n P(o_i \mid w_i)$$

This is the word-level model.

Single-point transforms (ins / del / sub / tran)

Task model

- Create a training corpus: find mis-spelt text, correct it and keep track of corrections.
- ▶ Estimate $P(o_i | c_i)$
- How to estimate the probability for every error type?
 - Example: what's the probability of spelling w = "problem" as t="oroblem"?
 - ▶ "p" occurs 14568 times. It is mis-spelt as "o" 17 times.
 - The probability is

$$\frac{sub(t_n, c_n)}{count(c_n)} = \frac{sub(o, p)}{count(p)} = \frac{17}{14568}$$

Similarly, for other 3 misspelling types

Two Models: Task Model and Language Model

```
\arg\max_{w_1^n\in\Gamma}P(w_1^n\mid o_1^n) \ = \ \arg\max_{w_1^n\in\Gamma}P(o_1^n\mid w_1^n) \ P(w_1^n)
P(o_1^n\mid w_1^n) \ Task \ \mathsf{Model}
\qquad \qquad \blacktriangleright \ \mathsf{Defined!}
P(w_1^n) \ Language \ \mathsf{Model}
\qquad \qquad \blacktriangleright \ \mathsf{How?} \ \mathsf{We \ will \ talk \ about \ it \ today}
```

The Construction of Language Models

Probability of a sentence $w_1...w_n$ (Joint probability)

$$P(w_{1},...,w_{n}) = P(w_{n}|w_{1}...w_{n-1}) P(w_{1}...w_{n-1})$$

$$= P(w_{n}|w_{1}...w_{n-1}) P(w_{n-1}|w_{1}...w_{n-2}) P(w_{1}...w_{n-2})$$

$$= P(w_{1}) \prod_{i=2}^{n} P(w_{i}|w_{1},...,w_{i-1}) - \text{from Chain Rule}$$

Example: a look back at history

P(a look back at history) = P(a)P(look|a)P(back | a look)P(at | a look back)P(history | a look back at)

Estimation from Corpora

We want a model of sentence probability $P(w_1, ..., w_n)$ for all word sequences $w_1, ..., w_n$ over the vocabulary V:

$$P(w_1,\ldots,w_n) = P(w_1) \prod_{i=2}^n P(w_i|w_1,\ldots,w_{i-1})$$

Tasks to do:

- ► Estimate P(w₁)
- ► Estimate probabilities $P(w_i|w_1,...,w_{i-1})$ for all $w_1,...,w_i$!

Estimation from Corpora II

Relative Frequency from a corpus

$$P(w_i \mid w_1, ..., w_{i-1}) = \frac{Count(w_1, ..., w_{i-1}, w_i)}{\sum_{w \in V} Count(w_1, ..., w_{i-1}, w)}$$

where N is number of all sequences of length i in corpus.

Why is this not a good idea?

Suppose |V|=1000, sentences are ≈ 10 words long: 1000^{10} possible sequences (probability values to estimate): no corpus is large enough!

What to do in order to estimate these probabilities?

- Bucketing histories: Markov models
- Smoothing techniques against sparse-data

Markov Assumption and N-grams

Limited history: There is a fixed finite k such that for all w_1^{i+1} :

$$P(w_{i+1}|w_1,\ldots,w_i)\approx P(w_{i+1}|w_{i-k},\ldots,w_i)$$

For $k \ge 0$

$$P(w_i \mid w_1, ..., w_{i-k}, ..., w_{i-1}) \approx P(w_i \mid w_{i-k}, ..., w_{i-1})$$

How to estimate the probabilities?

Estimation: kth-order Markov Model

$$P(w_i \mid w_{i-k}, \dots, w_{i-1}) = \frac{Count(w_{i-k}, \dots, w_{i-1}, w_i)}{\sum_{w \in V} Count(w_{i-k}, \dots, w_{i-1}, w)}$$

Estimation (from a corpus)

$$P(w_i \mid w_{i-k}, \dots, w_{i-1}) = \frac{Count(w_{i-k}, \dots, w_{i-1}, w_i)}{\sum_{w \in V} Count(w_{i-k}, \dots, w_{i-1}, w)}$$

Addition of START and STOP

$$P(w_1,\ldots,w_n) = \prod_{i=1}^{n-n+1} P(w_i|w_{i-n+1},\ldots,w_{i-1})$$

where $w_j = \langle s \rangle$ (START) for $j \leq 0$ and $w_{n+1} = \langle /s \rangle$ (STOP)

$$\sum_{w_{i-1}, \dots, w_{i-1}, \dots, w_{i-1}, w} Count(w_{i-k}, \dots, w_{i-1}, w) = Count(w_{i-k}, \dots, w_{i-1})$$

Smoothing

An example corpus:

- 1. the cat saw the mouse.
- 2. the cat heard a mouse.
- 3. the mouse heard.
- 4. a mouse saw.
- 5. a cat saw.

(Langley & Stromsten, 2000)

Bigram model

bigram	count	unigram	count	bigram r.f.
START the	3	START	5	.6
the cat	2	the	5	.4
cat saw	2	cat	4	.5
saw the	1	saw	3	.33
the mouse	2	the	5	.4
mouse END	3	mouse	5	.6
cat heard	2	cat	4	.5
heard a	1	heard	3	.33
a mouse	2	а	4	.5

. . .

Bigram derivations

Likelihood:

 P_{bigram} (" the cat heard a mouse") = $.6 \times .4 \times .5 \times .33 \times .5 \times .6 = 0.12$

Trigram derivations

Relation between ngrams and finite-state automata

An ngram model with Markov order m = n - 1 is equivalent to an automaton, with for every ngram $g = \langle w_{i-m}, w_{i-(m-1)}, \dots, w_i \rangle$

- states defined by all histories < w_{i−m},..., w_{i−1} >
- transition probabilities

$$P(< w_{i-(m-1)}, \ldots, w_i > | < w_{i-m}, \ldots, w_{i-1} >) = P(g)$$

Finite-state machines

- More general than ngram models.
- States no longer restricted to histories (sequences of observable words, but maybe from any finite set of arbitrary states.)
- Probabilistic FSMs equivalent to Hidden Markov Models.

Hidden Markov Models: Concepts

What is an HMM?

Graphical Representation

- Circles indicate states; special state called Start State.
- Arrows indicate probabilistic dependencies between states.
- Top circles are Hidden States; bottom circles are Observed states.

Hidden Markov Models- 2

Transition prob. For every transition $S_j \to S_k$, we have a transition Probability $P(S_k|S_i)$ (implementing n-gram probability).

Emission prob: for every state s_k and every word w_i , we have an emission probability $P(w_i | s_k)$ (implementing $P(w_i | t_i)$).

Constraints: $\forall s_j: \sum_{s_i \in S} P(s_i \mid s_j) = 1 \quad \forall s_k: \sum_w P(w \mid s_k) = 1$ We will get back to them during the next lecture! Smoothing techniques applied to ngram statistics

Today: Smoothing for *n*-grams

- N-gram statistics and Sparse-data problems
- The need for smoothing techniques
- A sketch of smoothing approaches:
 - 1. Add λ method
 - Good-Turing method
 - 3. Discounting: Katz' backoff
 - 4. Interpolation: Jelinek-Marcer

Reference: Joshua Goodman and Stanly Chen. *An empirical study of smoothing techniques for language modeling.* Tech. report TR-10-98, Harvard University, August 1998.

http://research.microsoft.com/~joshuago/

Zero counts

Model: we train a bigram model on Data: $P(w_i|w_{i-1})$, e.g. "the cat

sees the mouse", ..., "Tom sees Jerry", "the mouse sees

Jerry"

Problem: P("Jerry sees the mouse") = 0, why?

Data: text does not contain bigrams (START, Jerry) and

⟨Jerry, sees⟩

Zeros: are called "unseen events",

Question: the above sentence should have a non-zero probability,

how do we estimate its probability?

The sparse-data problem

- As n increases, the number of n-grams greater: chance that all 2-grams are present in training corpus is small.
- ► The probability is smaller for 3-grams, 4 grams ,...!!
- Which n yields n-grams that are suitable for modeling language? n = 1, 2, 3

Why are zero's a problem for language models?

Why are zero probabilities a problem?

- Lack of robustness: if our estimate of the probability of some sentence in the input is zero, then we can do nothing with this sentence in further processing
- The problem will get worse as our language models get more informed by adding linguistic knowledge (it is time-consuming to annotate data)
 - For e.g., in case of n-gram models, sparse-data problem is worse as n increases.

So: we will need a general solution for this.

N-gram counts and sparsity

A 2^{nd} -order Markov model (trigrams) of $P(w_1, \dots w_m)$ can be modelled using two tables (actually one):

Trigram	count	Bigram	counts
< s > The boy	Count($< s >$ The boy)	< s > The	Count(< s > The)
The boy went	Count(The boy went)	The boy	Count(The boy)
boy went home	Count(boy went home)	boy went	Count(boy went)
:	:	:	:

Expect many zero's in the table

More data: Does that solve the problem completely?

There will always be events that are missing.

Zipf's law: an empirical observation about text, species etc.

freq(e): the frequency of e in naturally occurring data rank(e): the rank of e in the list ordered by freq.

There is a constant K such that for all e

$$freq(e) \times rank(e) = K$$

Example: An event of the 100,000th rank occurs 10,000 times less often than an event of the 10^{th} rank, i.e. $freq(e_{100000}) = \frac{1}{100000} \times freq(e_{10})$

Zipf's law

- In a given corpus, a few very frequent words, but very many infrequent words.
- Having a resonably sized corpus is important, but we always need smoothing.
- Smoothing technique used has a large effect on the performance of any NLP system.

Smoothing techniques for Markov Models

General Idea

Find a way to fill the gaps in counts of events in corpus C.

- Take care not to change original distribution too much.
- Fill the gaps only as much as needed: as corpus grows larger, there will be less gaps to fill.

Smoothing techniques for Markov Models

General Idea

Adding λ : Assume all events (bigrams) occur λ times more than they occur actually

Discount and redistribute: Reserve probability mass from seen events in order to give to unseen events (discounting).

- How to discount mass in a proper way? (how much is enough)
- How to redistribute mass? (define neighbors)
- How can we combine different model estimates and benefit from the complementary strengths of different models (Interpolation)?

Smoothing is a subject that offers a wide variety of techniques

Naive smoothing: Adding λ method (1)

Events: Set *E* of possible events, e.g. bigrams over *V*:

 $E = (V \times V)$

Data: $e_1, \dots e_N$ (data size is N events)

Counting: Event (bigram) e occurs C(e) times in Data

Relative Frequency estimate: $P_{rf}(e) = \frac{C(e)}{N}$

Add $0 < \lambda \le 1$: for all $e \in E$ (bigrams) change C(e) and $P_{rf}(e)$

$$\hat{C}(e) = C(e) + \lambda$$

$$P_{\lambda}(e) = \frac{C(e) + \lambda}{N + \lambda |E|}$$

Add λ method (2)

Example: Bigram Model

$$P_{\lambda}(w_i|w_{i-1}) = \frac{\lambda + c(w_{i-1}w_i)}{\sum_{w}(\lambda + c(w_{i-1},w))}$$

Advantages: very simple and easy to apply

Disadvantges: Method performs poorly (see Chen & Goodman):

- All unseen events receive same probability! Is that OK?
- All events upgraded by λ! Is that OK?

Good-Turing method

Intuition Use the counts of things you have seen *once* to estimate the count of things not seen.

i.e. use n-grams with frequency 1 to re-estimate the frequency of zero counts.

Suppose we have data with total count of events being *N*:

Standard notation:

r = frequency of event e

 n_r = number of events e with frequency r

 $n_r = |\{e \in E|Count(e) = r\}|$

 N_r = total frequency of events occurring exactly r times $N_r = r \times n_r$

Observation: $N = \sum_{r=1}^{\infty} N_r$ $N_0 = 0$

What we want: To recalculate the frequency r of an event (r^*)

Binomial distribution

- You have a biased coin:
 - The probability of the head (H) is p
 - ▶ The probability of the tail (T) is (1-p)
- What's the probability of observing k heads in n tosses P(k|n)?

Binomial coefficient

$$\begin{array}{llll} \mathbf{n} = 2 \\ & \text{HT} & p \times (1-p) \\ & \text{TH} & p \times (1-p) \\ & \text{HH} & p^2 \\ & \text{TT} & (1-p)^2 \end{array} \qquad \begin{array}{lll} p(k=0|n=2) = & (1-p)^2 \\ & p(k=1|n=2) = 2p(1-p) \\ & p(k=2|n=2) = & p^2 \end{array}$$

How do we generalize it?

$$p(k|n) = p^k \times (1-p)^{n-k} \times \text{ [number of sequences with k heads]}$$

- ▶ We have a corpus of N ngrams
- Imagine you have ngrams $(\alpha_1,\ldots,\alpha_s)$ with (unknown) probabilities (p_1,\ldots,p_s)
- Mhat would be the probability that ngram α_i appears r times?

$$\binom{N}{r} p_i^r (1-p_i)^{(N-r)}$$

Mhat would be the expected number of ngrams appearing r times?

$$E_N[n_r] = \sum_{i=1}^{s} {N \choose r} p_i^r (1 - p_i)^{(N-r)}$$

$$E_{N+1}[n_{r+1}] = \sum_{i=1}^{s} \binom{N+1}{r+1} p_i^{r+1} (1-p_i)^{(N-r)} = \sum_{i=1}^{s} \frac{N+1}{r+1} \binom{N}{r} p_i^{r+1} (1-p_i)^{(N-r)}$$

Expectations

Distribution q and a statistics x

$$q_i = ($$
 1/3, 1/3, 1/3 $)$ $x_i = ($ 1, 1, 10

Expectation for x under the distribution q

$$E_{[q]}(x) = \sum_{i} q_i \times x_i = \frac{1}{3} \times 1 + \frac{1}{3} \times 1 + \frac{1}{3} \times 10 = 4$$

The same as average for uniform distributions

Expectations

Distribution q and a statistics x

Expectation for x under the distribution q

$$E_{[q]}(x) = \sum_{i} q_i \times x_i = \frac{1}{20} \times 1 + \frac{1}{20} \times 1 + \frac{9}{10} \times 10 = 9.1$$

 Think of this as of a weighted average, where weights are the specified distribution

- Imagine you have ngrams $(\alpha_1,\ldots,\alpha_s)$ with (unknown) probabilities (p_1,\ldots,p_s)
- What is the expected true probability for a ngram α which appears r times in a corpus of N ngrams?

$$E_{P(\alpha=\alpha_j|C(\alpha)=r)}(p)$$

Expectation of probability!

That's what we need!

Under the distribution of α over $(\alpha_1, \dots, \alpha_s)$

$$E_{P_{unif}(\alpha = \alpha_j)}(p) = \sum_{j=1}^{s} P_{unif}(\alpha = \alpha_j) \times p_j = \sum_{j=1}^{s} \frac{1}{s} p_j = \frac{\sum_{j=1}^{s} p_j}{s}$$

But that's not what we need!

- Imagine you have ngrams $(\alpha_1, \dots, \alpha_s)$ with (unknown) probabilities (p_1, \dots, p_s)
- What is the expected true probability for a ngram α which appears r times in a corpus of N ngrams?

$$E_{P(\alpha=\alpha_j|C(\alpha)=r)}(p)$$

Expectation of probability!

That's what we need!

Under the distribution of α over $(\alpha_1, \ldots, \alpha_s)$ How do we compute this??

$$E_{P(\alpha=\alpha_j|C(\alpha)=r)}(p) = \sum_{i=1}^{s} P(\alpha=\alpha_j|C(\alpha)=r) \times p_j$$

We know how to compute this:

We know now to compute this.
$$\binom{N}{r} r/1$$

 $P(\alpha = \alpha_j, C(\alpha) = r) = \binom{N}{r} p_j^r (1 - p_j)^{(N-r)} \qquad \text{Recall: } P(x|y) = \frac{P(x,y)}{P(y)} = \frac{P(x,y)}{\sum_{x'} P(x',y)}$

$$P(\alpha = \alpha_j | C(\alpha) = r) = \frac{P(\alpha = \alpha_j, C(\alpha) = r)}{\sum_{j'} P(\alpha = \alpha_{j'}, C(\alpha) = r)} = \frac{p_j^r (1 - p_j)^{(N-r)}}{\sum_{j'} p_{j'}^r (1 - p_{j'})^{(N-r)}}$$

- Imagine you have ngrams $(\alpha_1, \dots, \alpha_s)$ with (unknown) probabilities (p_1, \dots, p_s)
- What is the expected true probability for a ngram α which appears r times in a corpus of N ngrams?

$$p_{GT}(\alpha) = E_{P(\alpha = \alpha_j | C(\alpha) = r)}(p) = \sum_{j=1}^{s} P(\alpha = \alpha_j | C(\alpha) = r) \times p_j =$$

$$P(\alpha = \alpha_j | C(\alpha) = r) = \frac{p_j^r (1 - p_j)^{(N-r)}}{\sum_{j'} p_{j'}^r (1 - p_{j'})^{(N-r)}}$$

$$= \sum_{i=1}^{s} \frac{p_j^r (1 - p_j)^{(N-r)}}{\sum_{j'} p_{j'}^r (1 - p_{j'})^{(N-r)}} p_j = \frac{\sum_{j=1}^{s} p_j^{r+1} (1 - p_j)^{(N-r)}}{\sum_{j'} p_{j'}^r (1 - p_{j'})^{(N-r)}}$$

$$\begin{split} \text{Recall: } E_N[n_r] &= \sum_{i=1}^s \binom{N}{r} p_i^r (1-p_i)^{(N-r)} \\ E_{N+1}[n_{r+1}] &= \sum_{i=1}^s \frac{N+1}{r+1} \binom{N}{r} p_i^{r+1} (1-p_i)^{(N-r)} \end{split}$$

Good-Turing estimate: $p_{GT}(\alpha) = \frac{r+1}{N+1} \frac{E_{N+1}[n_{r+1}]}{E_{N}[n_{r}]} \approx \frac{r+1}{N+1} \frac{n_{r+1}}{n} \approx \frac{r+1}{N} \frac{n_{r+1}}{n}$

The number of ngrams appearing

(r+1) times

Good-Turing Estimates

The Good-Turing probability estimate for events with frequency *r*:

$$P_{GT}(\alpha) \approx \frac{r+1}{N} \frac{n_{r+1}}{n_r} = \frac{1}{N} \times (r+1) \times \frac{n_{r+1}}{n_r}$$

We can think of this, as assigning frequency of r^* to events appearing r times:

$$r^* = (r+1) \times \frac{n_{r+1}}{n_r}$$

 n_r : number of events with freq. r

 n_{r+1} : number of events with freq. r+1

Properties of Good-Turing

Preservation: Total number of counts is preserved:

$$N = \sum_{r=1}^{\infty} r n_r = \sum_{r=0}^{\infty} (r+1) n_{r+1} = \sum_{r=0}^{\infty} n_r r^*$$

Discounting: Total freq. for non-zero events is discounted

$$N_0 = n_0 \times 0^* = n_0 \times (1 \times \frac{n_1}{n_0}) = n_1$$

Zero freq. events

$$P_0 = \frac{r^*}{N} = \frac{0*}{N} = \frac{n_1}{N}$$

Zero events: No explicit method for redistributing N_0 among zero events!

Redistribute the reserved mass (N_0) uniformly among zero events?