Lecture 3: Markov Models as Language Model

Ilvan Titov
ILLC, Universiteit van Amsterdam

April 9, 2014

Recap: Spelling correction

Therr is a boy on the roof There is a boy on the roof.

.. Selection

There T
Three | is a boy on the roof.

[Therr js a boy on the roof Threw

_—

Expansion of correction

Context-Dependent models

» Typos in text: Three is a boy on the roof

» Context of words : a word is known by the company it keeps
Consider whole sentences/ parts of sentences.

How did we approach the problem?

The Noisy-Channel metaphor at sentence level

n
M;' Noisy Channel O,
message Observation

Sentence level O and C
O:o1,...,0n C: W1,...,Wn

Two Models: Task Model and Language Model

argmax P(w{ | of) = argmax P(of | w{) P(w{)
wiel wiel

P(of | w{) Task Model

> How likely is of as a result of typos in wy{'?
» What plays a role: knowledge of keyboard,
knowledge of ins/del/sub/tran!
P(w]) Language Model

> How likely is it that wy' is a sentence in the language?
» Here, knowledge of the language (word order,syntax,
semantics can be included..)

Division of labor: language model and task model

Independence Assumptions (Task model)

Task Model We make the assumption that misspelling in a word
is independent of misspellings in other words (a
reasonable assumption!)

P(of | wy{) l_lPo,lw,

This is the word-level model.
Single-point transforms (ins / del / sub / tran)

Task model

» Create a training corpus: find mis-spelt text, correct it and
keep track of corrections.

» Estimate P(o; | ¢i)
» How to estimate the probability for every error type?

» Example: what'’s the probability of spelling w = “problem” as
t="oroblem”?

» “p” occurs 14568 times. It is mis-spelt as “0” 17 times.
» The probability is

sub(ty,c,) sub(o,p) 17
count(c,) count(p) 14568

» Similarly, for other 3 misspelling types

Two Models: Task Model and Language Model

argmax P(w] | of) = argmax P(of | w{') P(wy])
wiel wiel
P(of | w]) Task Model
» Defined!

P(w{) Language Model

» How? We will talk about it today

The Construction of Language Models

Probability of a sentence w;...w, (Joint probability)

P(wi,....wn) = P(Wplwi...Wnhoq) P(Wy...Wq_q)

P(wplwy ... Wn_1) P(Wp_1|wy ... Wn_2) P(w; ... Wp_2)
= P(w) [1, P(wilwy, ..., wiy) — from Chain Rule

Example: a look back at history

P(a look back at history) =
P(a)P(look|a)P(back | a look)P(at | a look back)P(history | a look back at)

Estimation from Corpora

We want a model of sentence probability P(wj, ..., w,) for all word
sequences wi, ..., W, over the vocabulary V:

n
P(wi,...,wp) = P(wq) n P(wjlw,...,wi_1)
=2

Tasks to do:
» Estimate P(wy)
» Estimate probabilities P(wjlwy, ..., w;_1) for all wy, ..., w;!

Estimation from Corpora Il

Relative Frequency from a corpus

P(wi | w Wi t) = Count(wy, ..., Wi_1, w;)
: e _ZWEVcOUFIt(Wh...,W;q,W)

where N is number of all sequences of length i in corpus.
Why is this not a good idea?
Suppose |V| = 1000, sentences are ~ 10 words long:

1000'° possible sequences (probability values to estimate): no corpus is
large enough!

What to do in order to estimate these probabilities?

» Bucketing histories: Markov models
» Smoothing techniques against sparse-data

Markov Assumption and N-grams

Limited history: There is a fixed finite k such that for all w1"+1:

P(Wit1lwy, ..., w;) = P(Wit1 Wik, ..., W)

Fork >0
P(w | wi,...Wik...,Wi—1) ~ P(W; | Wik, ..., Wi_1)

How to estimate the probabilities?

Estimation: k-order Markov Model

COUFIT(W,'_k, e Wi, W,')
P(wi|wWi_k,...,wji_q) =
(Wil Wi-i 1) Ywev Count(Wik, ..., Wi—1, W)

Estimation (from a corpus)

Count(Wi_g, ..., Wi-1, W;)
2weV COUI’)t(W,'_k, cees Wi, W)

P(w; | Wik,...,Wj_1) =

Addition of START and STOP

i=n+1
P(wy,...,wy) = l_[P(wilwi-ny1, ..., Wi1)
i=1
where w; =< s > (START) for j < 0 and wp1 =< /s > (STOP)

Count(Wi_g, ..., Wij_1, w) = Count(Wj_x, ..., Wi_1)
weVU{STOP}

Smoothing

An example corpus:

the cat saw the mouse.
the cat heard a mouse.
the mouse heard.

a mouse saw.

o M w0~

a cat saw.

(Langley & Stromsten, 2000)

Bigram model

bigram count | unigram count | bigram r.f.
START the 3 START 5 .6
the cat 2 the 5 4
cat saw 2 cat 4 .5
saw the 1 saw 3 .33
the mouse 2 the 5 4
mouse END 3 mouse 5 .6
cat heard 2 cat 4 5
heard a 1 heard 3 .33
a mouse 2 a 4 5

Bigram derivations

saw

cat saw | []

cary heard(.5)

the heard
the(.6)
a(.33)
START - a mause(8) mouse
END(.6)
] END
Likelihood:

Ppigram (“ the cat heard a mouse) = .6x.4x.5x.33x.5x.6 = 0.12

Trigram derivations

’ the, cat ’ﬂ{ cat, saw ‘ []
at

heard

’ cat, heard ’L{ heard, a ‘

[

START, the

a, mouse

END(.6)

mouse, END

START, a

Relation between ngrams and finite-state automata

An ngram model with Markov order m = n — 1 is equivalent to an
automaton, with for every ngram g =< wj_p,, Wi (m1)s---»> Wi >

» states defined by all histories < wj_p, ..., wj_1 >

» transition probabilities
P(< Wis(m=1)s+--» Wi > | < Wi_m, ..., Wj—1 >) = P(g)

Finite-state machines

» More general than ngram models.

» States no longer restricted to histories (sequences of
observable words, but maybe from any finite set of arbitrary
states.)

» Probabilistic FSMs equivalent to Hidden Markov Models.

saw

Hidden Markov Models: Concepts

What is an HMM?
Graphical Representation

» Circles indicate states; special state called Start State.
» Arrows indicate probabilistic dependencies between states.

> Top circles are Hidden States; bottom circles are Observed states.

Hidden States
(POS tags)

4 }(\ / }(\ /. 71(\‘ / \ / \ / \ Observed States

_/ NN \ - \ -/ \) (words)

Hidden Markov Models- 2

Hidden States
(POS tags)

Observed States
(words)

Transition prob. For every transition S; — Sk, we have a transition
Probability P(Sk|S;) (implementing n-gram probability).

Emission prob: for every state s, and every word w;, we have an
emission probability P(w; | sx) (implementing P(w; | t)).

Constraints: Vs;: Y s P(sils) =1 Vsk: Y P(w|sg) =1
We will get back to them during the next lecture!

Smoothing techniques applied to ngram statistics

Today: Smoothing for n-grams

» N-gram statistics and Sparse-data problems
» The need for smoothing techniques

» A sketch of smoothing approaches:

1. Add A method

2. Good-Turing method

3. Discounting: Katz’ backoff
4. Interpolation: Jelinek-Marcer

Reference: Joshua Goodman and Stanly Chen. An empirical
study of smoothing techniques for language modeling. Tech. report
TR-10-98, Harvard University, August 1998.
http://research.microsoft.com/~joshuago/

http://research.microsoft.com/~joshuago/

Zero counts

Model:

Problem:

Data:

Zeros:

Question:

we train a bigram model on Data: P(w;lw;_1), e.g. “the cat
sees the mouse”, ..., “Tom sees Jerry”, “the mouse sees
Jerry”

P(“Jerry sees the mouse”) = 0, why?

text does not contain bigrams (START, Jerry) and
(Jerry, sees)

are called “unseen events”,

the above sentence should have a non-zero probability,
how do we estimate its probability?

The sparse-data problem

» As n increases, the number of n-grams greater : chance that
all 2-grams are present in training corpus is small.

» The probability is smaller for 3-grams, 4 grams ,...!!
» Which n yields n-grams that are suitable for modeling
language? n=1,2,3

Why are zero’s a problem for language models?

Why are zero probabilities a problem?

» Lack of robustness: if our estimate of the probability of some
sentence in the input is zero, then we can do nothing with this
sentence in further processing

» The problem will get worse as our language models get more
informed by adding linguistic knowledge (it is time-consuming to
annotate data)

» For e.g., in case of n-gram models, sparse-data problem is
worse as n increases.

So: we will need a general solution for this.

N-gram counts and sparsity

A 2™.order Markov model (trigrams) of P(wi,...wp) can be
modelled using two tables (actually one):

Trigram count | | Bigram counts
< s > The boy Count(< s > The boy) <s>The Count(< s> The)
The boy went Count(The boy went) The boy Count(The boy)
boy went home Count(boy went home) boy went Count(boy went)

Expect many zero’s in the table

More data: Does that solve the problem completely?

There will always be events that are missing.

Zipf’s law: an empirical observation about text, species etc.

freq(e) : the frequency of e in naturally occuring data
rank(e) : the rank of e in the list ordered by freq.

There is a constant K such that for all e
freq(e) x rank(e) = K

Example: An event of the 100,000 rank occurs 10, 000 times less
often than an event of the 10" rank, i.e.

freq(€100000) = 10,1% x freq(e1o)

Zipf's law

Frequency

Rank

> In a given corpus, a few very frequent words, but very many
infrequent words.

» Having a resonably sized corpus is important, but we always need
smoothing.

» Smoothing technique used has a large effect on the performance of
any NLP system.

Smoothing techniques for Markov Models

General Idea
Find a way to fill the gaps in counts of events in corpus C.

» Take care not to change original distribution too much.

» Fill the gaps only as much as needed: as corpus grows larger,
there will be less gaps to fill.

Smoothing techniques for Markov Models

General Idea

Adding A: Assume all events (bigrams) occur A times more than they
occur actually

Discount and redistribute: Reserve probability mass from seen events in
order to give to unseen events (discounting).

» How to discount mass in a proper way? (how much
is enough)

» How to redistribute mass? (define neighbors)

» How can we combine different model estimates and
benefit from the complementary strengths of different
models (Interpolation)?

Smoothing is a subject that offers a wide variety of techniques

Naive smoothing: Adding A method (1)

Events: Set E of possible events, e.g. bigrams over V:
E=(VxV)

Data: eq,...ey (data size is N events)

Counting: Event (bigram) e occurs C(e) times in Data

Relative Frequency estimate: Pr(e) = %

Add 0 < A < 1: for all e € E (bigrams) change C(e) and P(e)

C(e)=C(e)+1
C(e)+ 1

Pie) = =2 =
(€)= NTE

Add 1 method (2)

Example: Bigram Model

o At o(wigw)
PAI) = ST iy W)

Advantages: very simple and easy to apply
Disadvantges: Method performs poorly (see Chen & Goodman):

» All unseen events receive same probability! Is
that OK?
» All events upgraded by A! Is that OK?

Good-Turing method

Intuition Use the counts of things you have seen once to estimate the
count of things not seen.

i.e. use n-grams with frequency 1 to re-estimate the frequency of zero
counts.

Suppose we have data with total count of events being N:

Standard notation:

r = frequency of event e
n, = number of events e with frequency r
nr = |{e € E|Count(e) = r}|
N, = total frequency of events occuring exactly r times
N, =rxn,
Observation: N=3Y7" N, No =0

What we want: To recalculate the frequency r of an event (r*)

Binomial distribution

» You have a biased coin:
The probability of the head (H) is P
The probability of the tail (T) is (1 — p)

» What's the probability of observing k heads in n tosses P(k[n)?
n=2

HT px(1-p) plk=0n=2)= (1-p)?
TH px(1-p) plk=1n=2)=2p(1—p _— :
HH p2 . - _ 9 Binomial coefficient
plk=2n=2)= P n n!
TT (1-p)° -
k)~ (n—k)k

» How do we generalize it?

p(k|n) = p* x (1 —p)"~* x [number of sequences with k heads]

Binomial ngram model

» We have a corpus of N ngrams

» Imagine you have ngrams (a1,...,«as) with (unknown) probabilities (p1,...,ps)

» What would be the probability that ngram «; appears 7 times!

<N)p§(1 —)N
r

» What would be the expected number of ngrams appearing r times?

S

Exfnr] =3 (]:)pi(l —pi) V7

i=1

N+1 _ * N+1/N i
E ” P —)NV = rHL(]) (N=7)
wealraal Z()) 2 P e

i=1 i=1

Expectations

» Distribution q and a statistics x

a = (1/3, 1/3, 1/3)
:L’i:(1, 1, 10)
The same as average for

. L . Fosyrin @lisarlsu
» Expectation for x under the distribution q uniform distributions

1
By (z Zqzxzzz x1+§><1+§><10_4

Expectations

» Distribution q and a statistics x

¢=(1/20, 1/20, 9/10)
z; = (1, 1, 10)

» Expectation for x under the distribution g

1 9
Epy(x Zqzxxzz—xuﬁxuﬁxmfm

» Think of this as of a weighted average, where weights are the specified
distribution

Binomial ngram model

» Imagine you have ngrams (a1, ..., ;) with (unknown) probabilities (p1, ..., ps)

» What is the expected true probability for a ngram « which appears r
times in a corpus of N ngrams?

Ep(a=a;|c(a)=r)(P) Expectation of That's what we need!

probability!

Under the distribution

of a over (aq,...,qs)
s s s
1 j=1Dj
EPUnif(Q:Oéj)(p) :g Punif(a = aj) X pj = —-pj = L:J 1
; s s
Jj=1 j=1

But that's not what we need!

Binomial ngram model

» Imagine you have ngrams (a1, ..., ;) with (unknown) probabilities (p1, ..., ps)

» What is the expected true probability for a ngram « which appears r
times in a corpus of N ngrams?

Expectation of ')
Epa=a,|C(a)=r)(P) probability! That's what we need!
Under the distribution How do we
of a over (ay,...,as) compute this??

Ep(a—a,|C(a)=r) (0) = > Pla=a;|C(a) =) x p
j=1

» We know how to compute this: P(z,y) P(z,y)
5P = =
N, - Recall: P(z[y) Py S P@,y)
Pla=a;Cla)=r)= i1 -p;)
Pla=a;Cla)=r) pj(l- p) N

P(CM = OLj|C(CM) = 7") = Zj’ P(Oé — aj,70(a = 7”) N Z]'/ p;/(l _pj’)(N_T)

Binomial ngram model

» Imagine you have ngrams (a1, ..., ;) with (unknown) probabilities (p1, ..., ps)

» What is the expected true probability for a ngram « which appears r
times in a corpus of N ngrams?

pGT(Oé) = EP(I!:LYJIC((X):T')(p) = Zp(a = oz]|C(a) - T) X pj=
j=1

pr(l — pj)(N*T)
Pla=a;|C(a)=r)= J
(J| ()) Z]/p;/(lfp]/)(Nf")
= - p;(l_pj)(N—T) b = Z;=1p?+1(1 —pj)(N—r)
j=1 2Py (1 = py)NV > (1 — P) (N7
~ (N The number of
: = T(1 — p;) N7
Recall: Envlre] = Zl (7' >p1 (1 =pi) ngrams appearing
SN +1/N (r+1) times
E r = r+1 1—p: (N=7)
N+lne] =) e (T)pz (1—ps)

i=1

_rt+1 Enafneg] r4lnegn r+lneg
Good-Turing estimate: par(e) = N+1 Ex[n,] “"N+1n = N
T T

Ny

Good-Turing Estimates

The Good-Turing probability estimate for events with frequency r:

r+1n4 1 N1
Pger(a) ~ = =X(r+1)x
ar(@) » — TN (r+1) r
We can think of this, as assigning frequency of r* to events appearing r
times:
n
r=(r+1)x —
r
ny: number of events with freq. r

nq+1 : number of events with freq. r 4 1

Properties of Good-Turing

Preservation: Total number of counts is preserved:

N = m, = Z(r + 1)y = Z nrt
=1 r=0 r=0

I

Discounting: Total freq. for non-zero events is discounted

m
NO:noxo*:nox(1><n—):n1
0

Zero freq. events
P _ - 0= m
"N N N
Zero events: No explicit method for redistributing Ny among zero
events!

Redistribute the reserved mass (Np) uniformly among zero events?

	Data sparseness
	Smoothing techniques

