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Recap: Spelling correction

Recognition

Therr is a boy on the roof

Expansion of correction

Therr is a boy on the roof
Three
Threw

is a boy on the roof.
There

Selection

There is a boy on the roof.



Context-Dependent models

I Typos in text: Three is a boy on the roof
I Context of words : a word is known by the company it keeps

Consider whole sentences/ parts of sentences.

How did we approach the problem?

The Noisy-Channel metaphor at sentence level

Noisy Channel O1

n
n

1
message Observation

M

Sentence level O and C
O = o1, . . . , on C = w1, . . . ,wn



Two Models: Task Model and Language Model

arg max
wn

1∈Γ
P(wn

1 | o
n
1 ) = arg max

wn
1∈Γ

P(on
1 | w

n
1 ) P(wn

1 )

P(on
1 | w

n
1 ) Task Model

I How likely is on
1 as a result of typos in wn

1 ?
I What plays a role: knowledge of keyboard,

knowledge of ins/del/sub/tran!

P(wn
1 ) Language Model

I How likely is it that wn
1 is a sentence in the language?

I Here, knowledge of the language (word order,syntax,
semantics can be included..)

Division of labor: language model and task model



Independence Assumptions (Task model)

Task Model We make the assumption that misspelling in a word
is independent of misspellings in other words (a
reasonable assumption!)

P(on
1 | w

n
1 ) ≈

n∏
i=1

P(oi | wi)

This is the word-level model.
Single-point transforms (ins / del / sub / tran)



Task model

I Create a training corpus: find mis-spelt text, correct it and
keep track of corrections.

I Estimate P(oi | ci)
I How to estimate the probability for every error type?

I Example: what’s the probability of spelling w = “problem” as
t=“oroblem”?

I “p” occurs 14568 times. It is mis-spelt as “o” 17 times.
I The probability is

sub(tn, cn)

count(cn)
=

sub(o, p)
count(p)

=
17

14568

I Similarly, for other 3 misspelling types



Two Models: Task Model and Language Model
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I Defined!

P(wn
1 ) Language Model

I How? We will talk about it today



The Construction of Language Models

Probability of a sentence w1...wn (Joint probability)

P(w1, . . . ,wn) = P(wn |w1 . . .wn−1) P(w1 . . .wn−1)

= P(wn |w1 . . .wn−1) P(wn−1|w1 . . .wn−2) P(w1 . . .wn−2)

= P(w1)
∏n

i=2 P(wi |w1, . . . ,wi−1) — from Chain Rule

Example: a look back at history

P(a look back at history) =

P(a)P(look |a)P(back | a look)P(at | a look back)P(history | a look back at)



Estimation from Corpora

We want a model of sentence probability P(w1, . . . ,wn) for all word
sequences w1, . . . ,wn over the vocabulary V :

P(w1, . . . ,wn) = P(w1)
n∏

i=2

P(wi |w1, . . . ,wi−1)

Tasks to do:
I Estimate P(w1)

I Estimate probabilities P(wi |w1, . . . ,wi−1) for all w1, . . . ,wi !



Estimation from Corpora II

Relative Frequency from a corpus

P(wi | w1, . . . ,wi−1) =
Count(w1, . . . ,wi−1,wi)∑

w∈V Count(w1, . . . ,wi−1, w)

where N is number of all sequences of length i in corpus.

Why is this not a good idea?

Suppose |V | = 1000, sentences are ≈ 10 words long:
100010 possible sequences (probability values to estimate): no corpus is
large enough!



What to do in order to estimate these probabilities?

I Bucketing histories: Markov models
I Smoothing techniques against sparse-data



Markov Assumption and N-grams

Limited history: There is a fixed finite k such that for all w i+1
1 :

P(wi+1|w1, . . . ,wi) ≈ P(wi+1|wi−k , . . . ,wi)

For k ≥ 0

P(wi | w1, . . .wi−k . . . ,wi−1) ≈ P(wi | wi−k , . . . ,wi−1)

How to estimate the probabilities?

Estimation: k th-order Markov Model

P(wi |wi−k , . . . ,wi−1) =
Count(wi−k , . . . ,wi−1,wi)∑

w∈V Count(wi−k , . . . ,wi−1, w)



Estimation (from a corpus)

P(wi | wi−k , . . . ,wi−1) =
Count(wi−k , . . . ,wi−1,wi)∑

w∈V Count(wi−k , . . . ,wi−1, w)

Addition of START and STOP

P(w1, . . . ,wn) =
i=n+1∏

i=1

P(wi |wi−n+1, . . . ,wi−1)

where wj =< s > (START) for j ≤ 0 and wn+1 =< /s > (STOP)∑
w∈V∪{STOP}

Count(wi−k , . . . ,wi−1, w) = Count(wi−k , . . . ,wi−1)



Smoothing

An example corpus:

1. the cat saw the mouse.

2. the cat heard a mouse.

3. the mouse heard.

4. a mouse saw.

5. a cat saw.

(Langley & Stromsten, 2000)



Bigram model

bigram count unigram count bigram r.f.
START the 3 START 5 .6
the cat 2 the 5 .4
cat saw 2 cat 4 .5
saw the 1 saw 3 .33
the mouse 2 the 5 .4
mouse END 3 mouse 5 .6
cat heard 2 cat 4 .5
heard a 1 heard 3 .33
a mouse 2 a 4 .5
. . .



Bigram derivations

cat
cat(.4)

==
saw // saw . . .

��

the
the(.6)

;;
heard

heard(.5)

##

a(.33)
{{

START
a // a

mouse(.5) // mouse

END(.6)

��
. . . END

Likelihood:

Pbigram (“ the cat heard a mouse ”) = .6× .4× .5× .33× .5× .6 = 0.12



Trigram derivations

the, cat

cat
88

saw // cat , saw . . .

��

START , the

the
88

cat , heard

heard

%%
a // heard, a

mouse
&&

START . . . a,mouse

END(.6)

��
START , a

a

&&

mouse

11

mouse,END



Relation between ngrams and finite-state automata

An ngram model with Markov order m = n − 1 is equivalent to an
automaton, with for every ngram g =< wi−m,wi−(m−1), . . . ,wi >

I states defined by all histories < wi−m, . . . ,wi−1 >

I transition probabilities
P(< wi−(m−1), . . . ,wi > | < wi−m, . . . ,wi−1 >) = P(g)



Finite-state machines

I More general than ngram models.
I States no longer restricted to histories (sequences of

observable words, but maybe from any finite set of arbitrary
states.)

I Probabilistic FSMs equivalent to Hidden Markov Models.

+3 0
the **

a
44 1

cat **

mouse
44 2

saw **

heard
44

saw

$$

heard

::3
the **

a
44 4

mouse **

cat
44 5



Hidden Markov Models: Concepts

What is an HMM?
Graphical Representation

I Circles indicate states; special state called Start State.

I Arrows indicate probabilistic dependencies between states.

I Top circles are Hidden States; bottom circles are Observed states.

S S S S S S

K K K K K K

A A A A A

B B B B B B

(POS tags)

(words)

Observed States

Hidden States



Hidden Markov Models- 2

S S S S S S

K K K K K K

A A A A A

B B B B B B

(POS tags)

(words)

Observed States

Hidden States

Transition prob. For every transition Sj → Sk , we have a transition
Probability P(Sk |Sj) (implementing n-gram probability).

Emission prob: for every state sk and every word wi , we have an
emission probability P(wi | sk ) (implementing P(wi | ti)).

Constraints: ∀sj :
∑

si∈S P(si | sj) = 1 ∀sk :
∑

w P(w | sk ) = 1
We will get back to them during the next lecture!



Smoothing techniques applied to ngram statistics



Today: Smoothing for n-grams

I N-gram statistics and Sparse-data problems
I The need for smoothing techniques
I A sketch of smoothing approaches:

1. Add λ method
2. Good-Turing method
3. Discounting: Katz’ backoff
4. Interpolation: Jelinek-Marcer

Reference: Joshua Goodman and Stanly Chen. An empirical
study of smoothing techniques for language modeling. Tech. report
TR-10-98, Harvard University, August 1998.
http://research.microsoft.com/˜joshuago/

http://research.microsoft.com/~joshuago/


Zero counts

Model: we train a bigram model on Data: P(wi |wi−1), e.g. “the cat
sees the mouse”, ..., “Tom sees Jerry”, “the mouse sees
Jerry”

Problem: P(“Jerry sees the mouse”) = 0, why?

Data: text does not contain bigrams 〈START , Jerry〉 and
〈Jerry, sees〉

Zeros: are called “unseen events”,

Question: the above sentence should have a non-zero probability,
how do we estimate its probability?



The sparse-data problem

I As n increases, the number of n-grams greater : chance that
all 2-grams are present in training corpus is small.

I The probability is smaller for 3-grams, 4 grams ,...!!
I Which n yields n-grams that are suitable for modeling

language? n = 1, 2, 3

Why are zero’s a problem for language models?



Why are zero probabilities a problem?

I Lack of robustness: if our estimate of the probability of some
sentence in the input is zero, then we can do nothing with this
sentence in further processing

I The problem will get worse as our language models get more
informed by adding linguistic knowledge (it is time-consuming to
annotate data)

I For e.g., in case of n-gram models, sparse-data problem is
worse as n increases.

So: we will need a general solution for this.



N-gram counts and sparsity

A 2nd-order Markov model (trigrams) of P(w1, . . .wm) can be
modelled using two tables (actually one):

Trigram count
< s > The boy Count(< s > The boy)
The boy went Count(The boy went)

boy went home Count(boy went home)
.
.
.

.

.

.

Bigram counts
< s > The Count(< s > The)
The boy Count(The boy)
boy went Count(boy went)

.

.

.
.
.
.

Expect many zero’s in the table



More data: Does that solve the problem completely?

There will always be events that are missing.

Zipf’s law: an empirical observation about text, species etc.

freq(e) : the frequency of e in naturally occuring data
rank(e) : the rank of e in the list ordered by freq.

There is a constant K such that for all e

freq(e) × rank(e) = K

Example: An event of the 100, 000th rank occurs 10, 000 times less
often than an event of the 10th rank, i.e.
freq(e100000) =

1
10,000 × freq(e10)



Zipf’s law

Rank

Frequency

I In a given corpus, a few very frequent words, but very many
infrequent words.

I Having a resonably sized corpus is important, but we always need
smoothing.

I Smoothing technique used has a large effect on the performance of
any NLP system.



Smoothing techniques for Markov Models

General Idea
Find a way to fill the gaps in counts of events in corpus C.

I Take care not to change original distribution too much.
I Fill the gaps only as much as needed: as corpus grows larger,

there will be less gaps to fill.



Smoothing techniques for Markov Models

General Idea

Adding λ: Assume all events (bigrams) occur λ times more than they
occur actually

Discount and redistribute: Reserve probability mass from seen events in
order to give to unseen events (discounting).

I How to discount mass in a proper way? (how much
is enough)

I How to redistribute mass? (define neighbors)
I How can we combine different model estimates and

benefit from the complementary strengths of different
models (Interpolation)?

Smoothing is a subject that offers a wide variety of techniques



Naive smoothing: Adding λ method (1)

Events: Set E of possible events, e.g. bigrams over V :
E = (V × V)

Data: e1, . . . eN (data size is N events)

Counting: Event (bigram) e occurs C(e) times in Data

Relative Frequency estimate: Prf (e) =
C(e)

N

Add 0 < λ ≤ 1: for all e ∈ E (bigrams) change C(e) and Prf (e)

Ĉ(e) = C(e) + λ

Pλ(e) =
C(e) + λ

N + λ|E |



Add λ method (2)

Example: Bigram Model

Pλ(wi |wi−1) =
λ+ c(wi−1wi)∑

w(λ+ c(wi−1,w))

Advantages: very simple and easy to apply

Disadvantges: Method performs poorly (see Chen & Goodman):
I All unseen events receive same probability! Is

that OK?
I All events upgraded by λ! Is that OK?



Good-Turing method

Intuition Use the counts of things you have seen once to estimate the
count of things not seen.
i.e. use n-grams with frequency 1 to re-estimate the frequency of zero
counts.

Suppose we have data with total count of events being N:

Standard notation:
r = frequency of event e
nr = number of events e with frequency r

nr = |{e ∈ E |Count(e) = r}|
Nr = total frequency of events occuring exactly r times

Nr = r × nr

Observation: N =
∑∞

r=1 Nr N0 = 0

What we want: To recalculate the frequency r of an event (r∗)



}  You have a biased coin: 

}  The probability of the head (H) is  

}  The probability of the tail (T) is  

}  What's the probability of observing k heads in n tosses           ? 
 
H T 
T H 
H H 
T  T 

 
}  How do we generalize it? 
 
 

 Binomial coefficient 
 
 
 

Binomial distribution 

n = 2
p ⇥ (1 � p)

p ⇥ (1 � p)

(1 � p)2
p2

P (k|n)

(1 � p)2

2p(1 � p)

p2

p(k|n) = pk ⇥ (1 � p)n�k ⇥ [number of sequences with k heads]

p

(1 � p)

p(k = 0|n = 2) =

p(k = 1|n = 2) =

p(k = 2|n = 2) = ✓
n

k

◆
=

n!

(n � k)!k!



}  We have a corpus of N ngrams 

}  Imagine you have ngrams                    with (unknown) probabilities   

}  What would be the probability that ngram         appears     times? 

}  What would be the expected number of ngrams appearing       times? 
 
 
 

Binomial ngram model 

(↵1, . . . , ↵s) (p1, . . . , ps)

✓
N

r

◆
pr

i (1 � pi)
(N�r)

EN [nr] =

sX

i=1

✓
N

r

◆
pr

i (1 � pi)
(N�r)

EN+1[nr+1] =

sX

i=1

✓
N + 1

r + 1

◆
pr+1

i (1 � pi)
(N�r)

r↵i

r

=

sX

i=1

N + 1

r + 1

✓
N

r

◆
pr+1

i (1 � pi)
(N�r)



}  Distribution q  and a statistics x   

}  Expectation for x under the distribution q 

 

Expectations  

qi = ( )

xi = ( )

1/3,   1/3,    1/3!
1,     1,      10!

E[q](x) =
X

i

qi ⇥ xi =
1

3
⇥ 1 +

1

3
⇥ 1 +

1

3
⇥ 10 = 4

The same as average for 
uniform distributions 
 



}  Distribution q  and a statistics x   

}  Expectation for x under the distribution q 

}  Think of this as of a weighted average, where weights are the specified 
distribution  

 

Expectations  

qi = ( )

xi = ( )

1/20,  1/20,    9/10!
1,     1,      10!

E[q](x) =
X

i

qi ⇥ xi =
1

20
⇥ 1 +

1

20
⇥ 1 +

9

10
⇥ 10 = 9.1



}  Imagine you have ngrams                    with (unknown) probabilities   

}  What is the expected true probability for a ngram       which appears r  
times in a corpus of N ngrams? 

 

 

 

 

Binomial ngram model 

(↵1, . . . , ↵s) (p1, . . . , ps)

That's what we need! Expectation of 
probability! 

EP (↵=↵j |C(↵)=r)(p)

Under the distribution 
of      over   (↵1, . . . , ↵s)↵

EPunif (↵=↵j)(p) =

But that's not what we need! 

sX

j=1

Punif (↵ = ↵j) ⇥ pj =
sX

j=1

1

s
pj =

Ps
j=1 pj

s

↵



}  Imagine you have ngrams                    with (unknown) probabilities   

}  What is the expected true probability for a ngram       which appears r  
times in a corpus of N ngrams? 

 

 

}  We know how to compute this: 

 

Binomial ngram model 

(↵1, . . . , ↵s) (p1, . . . , ps)

That's what we need! Expectation of 
probability! EP (↵=↵j |C(↵)=r)(p)

Under the distribution 
of      over   (↵1, . . . , ↵s)↵

How do we 
compute this?? 

P (↵ = ↵j , C(↵) = r) =

✓
N

r

◆
pr

j(1 � pj)
(N�r)

P (↵ = ↵j |C(↵) = r) =
P (↵ = ↵j , C(↵) = r)P
j0 P (↵ = ↵j0 , C(↵) = r)

=
pr

j(1 � pj)
(N�r)

P
j0 pr

j0(1 � pj0)(N�r)

EP (↵=↵j |C(↵)=r)(p) =

sX

j=1

P (↵ = ↵j |C(↵) = r) ⇥ pj

Recall: P (x|y) =
P (x, y)

P (y)
=

P (x, y)P
x0 P (x0, y)

↵



}  Imagine you have ngrams                    with (unknown) probabilities   

}  What is the expected true probability for a ngram       which appears r  
times in a corpus of N ngrams? 

 

 

 

Binomial ngram model 

(↵1, . . . , ↵s) (p1, . . . , ps)

P (↵ = ↵j |C(↵) = r) =
pr

j(1 � pj)
(N�r)

P
j0 pr

j0(1 � pj0)(N�r)

EP (↵=↵j |C(↵)=r)(p) =

sX

j=1

P (↵ = ↵j |C(↵) = r) ⇥ pj =

=

sX

j=1

pr
j(1 � pj)

(N�r)

P
j0 pr

j0(1 � pj0)(N�r)
pj

Recall: 

=

Ps
j=1 pr+1

j (1 � pj)
(N�r)

P
j0 pr

j0(1 � pj0)(N�r)

EN [nr] =

sX

i=1

✓
N

r

◆
pr

i (1 � pi)
(N�r)

EN+1[nr+1]

pGT (↵)

pGT (↵) =

=
r + 1

N + 1

EN+1[nr+1]

EN [nr]
Good-Turing estimate: ⇡ r + 1

N + 1

nr+1

nr
⇡ r + 1

N

nr+1

nr

The number of 
ngrams appearing  
(r+1) times 

=

sX

i=1

N + 1

r + 1

✓
N

r

◆
pr+1

i (1 � pi)
(N�r)

↵



Good-Turing Estimates

The Good-Turing probability estimate for events with frequency r :

PGT(α) ≈
r + 1

N
nr+1

nr
=

1
N
× (r + 1) ×

nr+1

nr

We can think of this, as assigning frequency of r∗ to events appearing r
times:

r∗ = (r + 1) ×
nr+1

nr

nr : number of events with freq. r
nr+1 : number of events with freq. r + 1



Properties of Good-Turing

Preservation: Total number of counts is preserved:

N =
∞∑

r=1

rnr =
∞∑

r=0

(r + 1)nr+1 =
∞∑

r=0

nr r∗

Discounting: Total freq. for non-zero events is discounted

N0 = n0 × 0∗ = n0 × (1 ×
n1

n0
) = n1

Zero freq. events

P0 =
r∗

N
=

0∗
N

=
n1

N

Zero events: No explicit method for redistributing N0 among zero
events!

Redistribute the reserved mass (N0) uniformly among zero events?


	Data sparseness
	Smoothing techniques


