Natural Language Processing I

lecture 2: topic models
aka making sense of text collections

Ivan Titov

Institute for Logic, Language and Computation
A motivation for topic modeling
A simple topic model (PLSA)
A refresher for EM
EM for PLSA
Problems with PLSA => LDA
MCMC methods => Gibbs sampling

• By the end of this lecture you will know how to construct a topic model
• A modeling framework used within many solutions in the industry (e.g., analysis of news / reviews /...)
• A building block for many interesting models
NLP Problems:
- Doc. classification
- Topic analysis
- Shallow synt. parsing /tagging
- Syntactic parsing
- Relation extraction
- Semantic parsing
- Models of inference
- Machine translation
- Question answering
- Opinion analysis
- Summarization
- Dialogue systems

Types of structures:
- Sequences / Chains
- Bags
- Spanning trees
- Hierarchical trees
- DAGs
- Bipartite graphs

Models/Views:
- Naive Bayes
- Topic models
- HMMs
- History- / transition-based models
- PCFGs
- DOP
- Global scoring (e.g., MST)
- "IBM" models

Set-ups:
- Supervised estimation
- Unsupervised
- Partially/semi-supervised
- Representation learning (factorizations / NNs)

Modeling frameworks:
- Generative ML
- Generative Bayes
- Discriminative
- Discriminative Bayes

...
Problem set-up

- **Given:** a collection of documents
- **Want:**
 - Detect key ‘topics’ discussed in the collection
 - For each document detect which ‘topics’ are discussed there
- **Requirements:**
 - No supervision (documents are not labeled)
 - Probabilistic methods
- The models we will describe generalize beyond these goals
Motivation

- Visualization of collections:
 - what are the topics discussed?
 - which documents discuss a topic?
- Opinion mining:
 - what is sentiment towards a product aspects?
 - what are important aspects of a product?
- Dimensionality reduction:
 - for information retrieval
 - for document classification
- Summarization:
 - ensuring topic coverage in a summary
Latent Semantic Analysis [Deerwester et al., 1990]

- Decomposition (SVD) of the co-occurrence matrix $X = U\Sigma V^T$
- Approximate the co-occurrence matrix $X \approx \hat{X} = U_k \Sigma_k V_k^T$

- **Hope**: terms having common meaning are mapped to the same direction
- **Hope**: documents discussing similar topics have similar representation
- Non-zero inner products between documents with non-overlapping terms
Latent Semantic Analysis [Deerwester et al., 1990]

\[
X \approx \hat{X} = U_k \Sigma_k V_k^T
\]

- Optimal rank \(k\) approximation (Frobenius norm):

\[
\hat{X} = \arg \min_{X' : \text{rank}(X') = k} \|X - X'\|
\]
Latent Semantic Analysis [Deerwester et al., 1990]

\[X \approx \hat{X} = U_k \Sigma_k V_k^T \]

- Not motivated probabilistically (no clean underlying probability model)
- No obvious interpretation of directions
Lecture

- A motivation for topic modeling
- A simple topic model (PLSA)
- A refresher for EM
- EM for PLSA
- Problems with PLSA => LDA
- MCMC methods => Gibbs sampling
- ...
Probabilistic LSA [Hofmann, 99]

- **Parameters:**
 - Distributions of topics in document $P(z|i)$, for every i
 - Distribution of words for every topic, $P(w|z)$, $z \in \{1, \ldots, K\}$

- **Generative story:**
 - For each document i
 - For each word occurrence j in document i
 - Select topic z_j for the word from $P(z_j | i)$
 - Generate word w_j from $P(w_j | z_j)$

- **Note:**
 - Words in the same documents can be generated from different topics
Probabilistic LSA: Example

Generative story: Given parameters generate text

Eruption $P(w \mid z = 1)$
- delays 0.003
- volcanic 0.002
- volcano 0.001
- ash 0.001
- cloud 0.001
- ...

Sport $P(w \mid z = 2)$
- football 0.004
- teams 0.002
- ball 0.002
- preparations 0.001
- Formula 1 0.001
- ...

Politics $P(w \mid z = 3)$
- Obama 0.005
- Merkel 0.001
- ceremony 0.001
- attend 0.0001
- party 0.0001
- ...

Document 1
... Delays due to the volcanic ash cloud will affect Formula 1 teams' preparations ...

Document 2
... Obama will not attend the ceremony due to delays caused by eruption ...

- Eruption
- Sport
- Politics
Probabilistic LSA: Example

... Delays due to the volcanic ash cloud will affect Formula1 teams preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption P(w | z = 1)
- delays: 0.003
- volcanic: 0.002
- volcano: 0.001
- ash: 0.001
- cloud: 0.001
- ...
- ...

Sport P(w | z = 2)
- football: 0.004
- teams: 0.002
- ball: 0.002
- preparations: 0.001
- Formula1: 0.001
- ...
- ...

Politics P(w | z = 3)
- Obama: 0.005
- Merkel: 0.001
- ceremony: 0.001
- attend: 0.0001
- party: 0.0001
- ...
- ...
Probabilistic LSA : Example

\[\text{Document 1} \]

... Delays due to the volcanic ash cloud will affect Formula 1 teams preparations ...

\[\text{Document 2} \]

... Obama will not attend the ceremony due to delays caused by eruption ...

<table>
<thead>
<tr>
<th>Eruption $P(w \mid z = 1)$</th>
<th>Sport $P(w \mid z = 2)$</th>
<th>Politics $P(w \mid z = 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>delays 0.003</td>
<td>football 0.004</td>
<td>Obama 0.005</td>
</tr>
<tr>
<td>volcanic 0.002</td>
<td>teams 0.002</td>
<td>Merkel 0.001</td>
</tr>
<tr>
<td>volcano 0.001</td>
<td>ball 0.002</td>
<td>ceremony 0.001</td>
</tr>
<tr>
<td>ash 0.001</td>
<td>preparations 0.001</td>
<td>attend 0.0001</td>
</tr>
<tr>
<td>cloud 0.001</td>
<td>Formula 1 0.001</td>
<td>party 0.0001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Probabilistic LSA: Example

Document 1

... *Delays* due to the volcanic ash cloud will affect Formula 1 teams preparations ...

Document 2

... Obama will not attend the ceremony due to delays caused by eruption ...

| Eruption $P(w | z = 1)$ | Sport $P(w | z = 2)$ | Politics $P(w | z = 3)$ |
|-------------------------|----------------------|------------------------|
| delays 0.003 | football 0.004 | Obama 0.005 |
| volcanic 0.002 | teams 0.002 | Merkel 0.001 |
| volcano 0.001 | ball 0.002 | ceremony 0.001 |
| ash 0.001 | preparations 0.001 | attend 0.0001 |
| cloud 0.001 | Formula 1 0.001 | party 0.0001 |
| ... | ... | ... |
Probabilistic LSA: Example

Document 1

... Delays due to the volcanic ash cloud will affect Formula 1 teams preparations ...

Document 2

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption $P(w | z = 1)$
- delays 0.003
- volcanic 0.002
- volcano 0.001
- ash 0.001
- cloud 0.001

Sport $P(w | z = 2)$
- football 0.004
- teams 0.002
- ball 0.002
- preparations 0.001
- Formula 1 0.001

Politics $P(w | z = 3)$
- Obama 0.005
- Merkel 0.001
- ceremony 0.001
- attend 0.0001
- party 0.0001
Probabilistic LSA : Example

... Delays due to the *volcanic* ash cloud will affect Formula1 teams preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption P(w | z = 1)
- delays 0.003
- **volcanic** 0.002
- volcano 0.001
- ash 0.001
- cloud 0.001

Sport P(w | z = 2)
- football 0.004
- teams 0.002
- ball 0.002
- preparations 0.001
- Formula1 0.001

Politics P(w | z = 3)
- Obama 0.005
- Merkel 0.001
- ceremony 0.001
- attend 0.0001
- party 0.0001
... Delays due to the **volcanic ash** cloud will affect Formula 1 teams preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

| Eruption P(w | z = 1) | Sport P(w | z = 2) | Politics P(w | z = 3) |
|-----------------------|-------------------|----------------------|
| delays | football | Obama |
| volcanic | teams | 0.005 |
| volcano | ball | Merkel |
| ash | preparations | ceremony |
| cloud | Formula 1 | attend |
| ... | ... | party |
| ... | ... | 0.0001 |
| ... | ... | ... |
Probabilistic LSA: Example

Document 1

... Delays due to the **volcanic ash cloud** will affect Formula 1 teams' preparations ...

Document 2

... Obama will not attend the ceremony due to delays caused by eruption ...

| Eruption P(w | z = 1) | Sport P(w | z = 2) | Politics P(w | z = 3) |
|-------------------------------|----------------------------|-------------------------------|
| delays 0.003 | football 0.004 | Obama 0.005 |
| volcanic 0.002 | teams 0.002 | Merkel 0.001 |
| volcano 0.001 | ball 0.002 | ceremony 0.001 |
| ash 0.001 | preparations 0.001 | attend 0.0001 |
| cloud 0.001 | Formula 1 0.001 | party 0.0001 |
| ... | ... | ... |
Probabilistic LSA: Example

Document 1

... Delays due to the volcanic ash cloud will affect Formula 1 teams' preparations ...

Document 2

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption P(w | z = 1)

- delays: 0.003
- volcanic: 0.002
- volcano: 0.001
- ash: 0.001
- cloud: 0.001
- ...

Sport P(w | z = 2)

- football: 0.004
- teams: 0.002
- ball: 0.002
- preparations: 0.001
- Formula 1: 0.001
- ...

Politics P(w | z = 3)

- Obama: 0.005
- Merkel: 0.001
- ceremony: 0.001
- attend: 0.0001
- party: 0.0001
- ...

Probabilistic LSA: Example

... Delays due to the volcanic ash cloud will affect Formula1 teams preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

<table>
<thead>
<tr>
<th>Eruption $P(w \mid z = 1)$</th>
<th>Sport $P(w \mid z = 2)$</th>
<th>Politics $P(w \mid z = 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>delays 0.003</td>
<td>football 0.004</td>
<td>Obama 0.005</td>
</tr>
<tr>
<td>volcanic 0.002</td>
<td>teams 0.002</td>
<td>Merkel 0.001</td>
</tr>
<tr>
<td>volcano 0.001</td>
<td>ball 0.002</td>
<td>ceremony 0.001</td>
</tr>
<tr>
<td>ash 0.001</td>
<td>preparations 0.001</td>
<td>attend 0.0001</td>
</tr>
<tr>
<td>cloud 0.001</td>
<td>Formula1 0.001</td>
<td>party 0.0001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Probabilistic LSA : Example

... Delays due to the volcanic ash cloud will affect Formula 1 teams’ preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

| Eruption P(w | z = 1) | Sport P(w | z = 2) | Politics P(w | z = 3) |
|-------------------------------|---------------------------------|--------------------------------|
| delays: 0.003 | football: 0.004 | Obama: 0.005 |
| volcanic: 0.002 | teams: 0.002 | Merkel: 0.001 |
| volcano: 0.001 | ball: 0.002 | ceremony: 0.001 |
| ash: 0.001 | preparations: 0.001 | attend: 0.0001 |
| cloud: 0.001 | Formula 1: 0.001 | party: 0.0001 |
| ... | ... | ... |
Probabilistic LSA: Example

... Delays due to the volcanic ash cloud will affect Formula 1 teams' preparations

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption $P(w \mid z = 1)$
- delays: 0.003
- volcanic: 0.002
- volcano: 0.001
- ash: 0.001
- cloud: 0.001

Sport $P(w \mid z = 2)$
- football: 0.004
- teams: 0.002
- ball: 0.002
- preparations: 0.001
- Formula 1: 0.001

Politics $P(w \mid z = 3)$
- Obama: 0.005
- Merkel: 0.001
- ceremony: 0.001
- attend: 0.0001
- party: 0.0001
Probabilistic LSA: Example

... Delays due to the volcanic ash cloud will affect Formula 1 teams' preparations ...

... Obama will not attend the ceremony due to delays caused by eruption ...

<table>
<thead>
<tr>
<th>Eruption $P(w \mid z = 1)$</th>
<th>Sport $P(w \mid z = 2)$</th>
<th>Politics $P(w \mid z = 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>delays 0.003</td>
<td>football 0.004</td>
<td>Obama 0.005</td>
</tr>
<tr>
<td>volcanic 0.002</td>
<td>teams 0.002</td>
<td>Merkel 0.001</td>
</tr>
<tr>
<td>volcano 0.001</td>
<td>ball 0.002</td>
<td>ceremony 0.001</td>
</tr>
<tr>
<td>ash 0.001</td>
<td>preparations 0.001</td>
<td>attend 0.0001</td>
</tr>
<tr>
<td>cloud 0.001</td>
<td>Formula 1 0.001</td>
<td>party 0.0001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Probabilistic LSA: Example

Document 1

... Delays due to the volcanic ash cloud will affect Formula 1 teams’ preparations ...

Document 2

... Obama will not attend the ceremony due to delays caused by eruption ...

Eruption $P(w \mid z = 1)$

- delays: 0.003
- volcanic: 0.002
- volcano: 0.001
- ash: 0.001
- cloud: 0.001
- ...

Sport $P(w \mid z = 2)$

- football: 0.004
- teams: 0.002
- ball: 0.002
- preparations: 0.001
- Formula 1: 0.001
- ...

Politics $P(w \mid z = 3)$

- Obama: 0.005
- Merkel: 0.001
- ceremony: 0.001
- attend: 0.0001
- party: 0.0001
- ...

...
PLSA: Example

- **Note:**
 - Words in the same documents can be generated from different topics
 - Does not take into account order, the following to texts are guaranteed to have the same probability under the model

```plaintext
delays due to the volcanic ash cloud will affect Formula 1 teams’ preparations
```

```plaintext
to ash due Formula 1 affect volcanic the will teams’ cloud preparations delays
```
We considered:

| Eruption $P(w | z = 1)$ | Sport $P(w | z = 2)$ | Politics $P(w | z = 3)$ |
|------------------------|----------------------|------------------------|
| delays 0.003 | football 0.004 | Obama 0.005 |
| volcanic 0.002 | teams 0.002 | Merkel 0.001 |
| volcano 0.001 | ball 0.002 | ceremony 0.001 |
| ash 0.001 | preparations 0.001 | attend 0.0001 |
| cloud 0.001 | Formula 1 0.001 | party 0.0001 |
| … | … | … |

Document 1

Document 2
In fact we are solving reverse problem:

Document 1

… Delays due to the volcanic ash cloud will affect Formula 1 teams’ preparations …

Document 2

… We are going to talk about learning in a moment

Eruption $P(w | z = 1)$

- delays 0.003
- volcanic 0.002
- volcano 0.001
- ash 0.001
- cloud 0.001

Sport $P(w | z = 2)$

- football 0.004
- teams 0.002
- ball 0.002
- preparations 0.001
- Formula 1 0.001

Politics $P(w | z = 3)$

- Obama 0.005
- Merkel 0.001
- ceremony 0.001
- attend 0.001
- party 0.0001

...
Directed Graphical Models

- Roughly, arrows denote conditional dependencies
- A generative story corresponds to a topological order on the graph
Plate Notation

\[
\begin{array}{c}
\text{Doc 1} \\
\text{Doc N}
\end{array}
\]
Plate Notation

\[z \xrightarrow{\text{Generated from } P(z | d)} w \xrightarrow{\text{Generate from } P(w | z)} \]

\[MN \]
Distributions are also variables...

\[\theta_d = P(z|d) \]

\[\varphi_k = P(w|z_k) \]
Summary so far

- We defined a generative model of document collections: \(P(W, Z|\varphi, \theta) \)

- Now, first we will consider how to do Maximum likelihood estimation, i.e.
 \[
 (\hat{\varphi}, \hat{\theta}) = \arg \max_{\varphi, \theta} P(W, Z|\varphi, \theta)
 \]

- Then we will consider Bayesian methods

- First, a refresher on EM for the discrete domain

We will discuss slightly later today why calling it a generative model of a collection is a bit misleading
Lecture

- A motivation for topic modeling
- A simple topic model (PLSA)
- A refresher for EM
- EM for PLSA
- Problems with PLSA => LDA
- MCMC methods => Gibbs sampling
- ...

33
EM is a class of algorithms that is used to estimate parameters in the presence of missing attributes.

Non-convex optimization, therefore:

- converges to a local maximum of the maximum likelihood function (or posterior distribution if we incorporate the prior distribution).
- can be very sensitive to the starting point

In PLSA we do not observe from each topic \(z \) a word is generated.
Three coin example

- We observe a series of coin tosses generated in the following way:
 - A person has three coins.
 - Coin 0: probability of Head is q_1 of Tail $q_2 = 1 - q_1$
 - Coin 1: probability of Head p_1
 - Coin 2: probability of Head p_2
 - Consider the following coin-tossing scenario
Three coin example

- Scenario:
 - Toss coin 0 (do not show it to anyone!).
 - If Head – toss coin 1 \(M \) times;
 - Else -- toss coin 2 \(M \) times.
 - Only the series of tosses are observed
 - HHHT, HTHT, HHHT, HTTH
 - What are the parameters of the coins? \(q_1, p_1, p_2 \)
 - There is no closed-form solution

Though check-out spectral methods / momentum methods if interested
Three coin example

- Scenario:
 - Toss coin 0 (do not show it to anyone!).
 - If Head – toss coin 1 M times;
 - Else -- toss coin2 M times.
 - Only the series of tosses are observed
 - HHHH, HTHT, HHHH, HTTH
 - What are the parameters of the coins ? \(q_1, p_1, p_2 \)
 - There is no closed-form solution

Though check-out spectral methods / momentum methods if interested
Key Intuition

- If we knew which of the data points (HHHT), (HTHT), (HTTH) came from Coin1 and which from Coin2, that would be trivial.

- Assume that you a \((p, 1-p)\) coin \(m\) times and get \(k\) heads and \(m-k\) tails.

- What would be the maximum likelihood estimate for \(p\)?
Key Intuition

- If we knew which of the data points (HHHT), (HTHT), (HTTH) came from Coin1 and which from Coin2, that would be trivial.

- Assume that you a \((p, 1-p)\) coin \(m\) times and get \(k\) heads and \(m-k\) tails.

- What would be the maximum likelihood estimate for \(p\)?

Derivation (was on the board):

\[
\arg \max_{p} L(p) = \arg \max_{p} \log(p^k (1-p)^{m-k}) = \arg \max_{p} k \log p + (m - k) \log(1 - p)
\]

\[
\frac{dL(p)}{dp} = \frac{k}{p} - \frac{(m-k)}{(1-p)} = 0
\]

Follows \(p = \frac{k}{m}\)

A general lesson learned:

(even if \(A, B \in \mathbb{R}^+\), not \(\mathbb{N}^+\))

\[
\arg \max_{p} (A \log p + B \log(1 - p)) = \frac{A}{A + B}
\]
Instead, use an iterative approach for estimating the parameters:

- **Guess the probability** that a data point came from Coin 1/2
- **Generate fictional labels**, weighted according to this probability.
- **Re-estimate** the initial parameter setting: set them to maximize the likelihood of these augmented data.

This process can be iterated and can be shown to converge to a local maximum of the likelihood function.
EM-algorithm: coins (E-step)

- We will assume (for a minute) that we know the parameters and use it to estimate which Coin a series came from.
- Then, we will use the prediction to estimate the most likely parameters and so on...
- What is the probability that the ith data point came from Coin 1?

D_i - is the i-th head-tail sequence

\[\mu_i(z_i) = p(z_i|D_i) = \frac{P(z_i)P(D_i|z_i)}{\sum_{z'=1}^{2} P(z')P(D_i|z')} \]

\[= \frac{q_z p_{z_i} h_i (1 - p_{z_i})^{(M-h_i)}}{\sum_{z'=1}^{2} q_z' p_{z_i} h_i (1 - p_{z_i})^{(M-h_i)}} \]

The number of heads in series i
EM-algorithm: coins (M-step)

- If we would observe the coin 0, the likelihood would look like:
 \[
 L_c(p, q) = \sum_{i=1}^{N} \log P(D_i, z_i|p, q) = \sum_{i=1}^{N} \log P(z_i)P(D_i|z_i, p, q)
 \]

- We do not observe it, so we want to maximize incomplete likelihood
 \[
 L_I(p, q) = \sum_{i=1}^{N} \log \sum_{z=1}^{2} P(D_i, z|p, q) = \sum_{i=1}^{N} \log \sum_{z=1}^{2} P(z)P(D_i|z, p, q)
 \]

- This hard to optimize directly (no closed form solution)

 - Instead on each step we maximize expectation of the likelihood
 \(L_c \) over the coin name:
 \[
 E_\mu[L_c] = E_\mu[\sum_{i=1}^{N} \log P(D_i, z|p, q)] = \sum_{i=1}^{N} E_\mu[\log P(D_i, z|p, q)] \\
 = \sum_{i=1}^{N} \sum_{z=1}^{2} \mu_i(z) \log P(D_i, z|p, q)
 \]
EM-algorithm: coins (M-step) - contd

$$E_\mu[L_c] = \sum_{i=1}^N E_\mu[\log P(D_i, z|p, q)]$$

$$= \sum_{i=1}^N \sum_{z=1}^2 \mu_i(z) \log P(D_i, z|p, q) = \sum_{i=1}^N \sum_{z=1}^2 \mu_i(z) \log q(z)p_z^{h_i}(1 - p)^{(M-h_i)}$$

$$= \sum_{z=1}^2 \left(\sum_{i=1}^N \mu_i(z)h_i \log p_z + \mu_i(z)(M - h_i) \log (1 - p_z) \right) + \left(\sum_{i=1}^N \mu_i(1) \right) \log q_1 + \left(\sum_{i=1}^N \mu_i(2) \right) \log(1 - q_1)$$

- **Maximize these 2 terms to get** p_1 **and** p_2
- **Maximize these term to get** q_1 **and** $q_2 = 1 - q_1$

Recall: $\arg \max_p (A \log p + B \log(1 - p)) = \frac{A}{A + B}$

$$p_z = \frac{\sum_{i=1}^N \mu_i(z)h_i}{\sum_{i=1}^N \mu_i(z)h_i + \sum_{i=1}^N \mu_i(z)(M - h_i)} = \frac{\sum_{i=1}^N \mu_i(z)h_i}{\sum_{i=1}^N \mu_i(z)M}$$

$$q_1 = \frac{\sum_{i=1}^N \mu_i(1)}{\sum_{i=1}^N \mu_i(1) + \sum_{i=1}^N \mu_i(2)} = \frac{\sum_{i=1}^N \mu_i(1)}{N}$$
Now say we have two sets \mathcal{X} and \mathcal{Y} and a joint distribution $P(X, Y|\theta)$.

If we have fully observable data, i.e. pairs (X_i, Y_i), then

$$L(\theta) = \sum_i \log P(X_i, Y_i|\theta)$$

If we have partially observable data, i.e. only X_i:

$$L(\theta) = \sum_i \log P(X_i|\theta) = \sum_i \log \sum_{Y \in \mathcal{Y}} P(X_i, Y|\theta)$$

The EM algorithm is the method for finding:

$$\hat{\theta} = \arg \max_{\theta} \sum_i \log \sum_{Y \in \mathcal{Y}} P(X_i, Y|\theta)$$
Iterative procedure is defined as \(\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1}) \), where

\[
Q(\theta, \theta^{t-1}) = \sum_i \sum_{Y \in \mathcal{Y}} P(Y|X_i, \theta^{t-1}) \log P(X_i, Y|\theta)
\]

Intuition:
- Fill hidden variables according to \(P(Y|X_i, \theta^{t-1}) \)
- EM is guaranteed to converge to a local minimum (or a saddle point) of the likelihood
- If \(L(\theta) = \sum_i \log P(X_i, Y_i|\theta) \) has a closed-form solution, then
 \[
 \arg \max_{\theta} \sum_i \sum_{Y \in \mathcal{Y}} P(Y|X_i, \theta^{t-1}) \log P(X_i, Y|\theta) \text{ has a closed-form solution as well}
 \]
EM for PLSA

\[
(\theta_d = P(z|d))
\]

\[
(\varphi_k = P(w|z_k))
\]

Sum over positions in the documents

Vocabulary size

The number of times word \(w \) appears in document \(i \)

E-step:

\[
P(z|i, w) = \frac{P(z|i)P(w|z)}{\sum_{z' = 1}^{K} P(z'|i)P(w|z')} = \frac{\theta_i(z)\varphi_z(w)}{\sum_{z' = 1}^{K} \theta_i(z')\varphi_{z'}(w)} \propto \theta_i(z)\varphi_z(w)
\]

M-step:

\[
\varphi_z(w) \propto \sum_{i=1}^{N} C(i, w)P(z|i, w)
\]

\[
\theta_i(z) \propto \sum_{w=1}^{V} C(i, w)P(z|i, w)
\]
Summary so far

- We defined a generative model of document collections: \(P(W, Z|\varphi, \theta) \)
- We considered how to do ML estimation, i.e.

\[
(\hat{\varphi}, \hat{\theta}) = \arg \max_{\varphi, \theta} P(W, Z|\varphi, \theta)
\]

- Now we could visualize collections \(P(w|z) = \hat{\varphi}_z \)
- Estimate topic distributions in each document \(P(z|i) = \hat{\theta}_i \)
Example (Science collection)

- Top 10 words for 10 topics out of 128 (ordered by $P(w|z) = \hat{\phi}_z$)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>universe</td>
<td>0.0439</td>
</tr>
<tr>
<td>galaxies</td>
<td>0.0375</td>
</tr>
<tr>
<td>clusters</td>
<td>0.0279</td>
</tr>
<tr>
<td>matter</td>
<td>0.0233</td>
</tr>
<tr>
<td>galaxy</td>
<td>0.0232</td>
</tr>
<tr>
<td>cluster</td>
<td>0.0214</td>
</tr>
<tr>
<td>cosmic</td>
<td>0.0137</td>
</tr>
<tr>
<td>dark</td>
<td>0.0131</td>
</tr>
<tr>
<td>light</td>
<td>0.0109</td>
</tr>
<tr>
<td>density</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>drug</td>
<td>0.0672</td>
</tr>
<tr>
<td>patients</td>
<td>0.0493</td>
</tr>
<tr>
<td>drugs</td>
<td>0.0444</td>
</tr>
<tr>
<td>clinical</td>
<td>0.0346</td>
</tr>
<tr>
<td>treatment</td>
<td>0.028</td>
</tr>
<tr>
<td>trials</td>
<td>0.0277</td>
</tr>
<tr>
<td>therapy</td>
<td>0.0213</td>
</tr>
<tr>
<td>trial</td>
<td>0.0164</td>
</tr>
<tr>
<td>disease</td>
<td>0.0157</td>
</tr>
<tr>
<td>medical</td>
<td>0.00997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>cells</td>
<td>0.0675</td>
</tr>
<tr>
<td>stem</td>
<td>0.0478</td>
</tr>
<tr>
<td>human</td>
<td>0.0421</td>
</tr>
<tr>
<td>cell</td>
<td>0.0309</td>
</tr>
<tr>
<td>gene</td>
<td>0.025</td>
</tr>
<tr>
<td>tissue</td>
<td>0.0185</td>
</tr>
<tr>
<td>cloning</td>
<td>0.0169</td>
</tr>
<tr>
<td>transfer</td>
<td>0.0155</td>
</tr>
<tr>
<td>blood</td>
<td>0.0113</td>
</tr>
<tr>
<td>embryos</td>
<td>0.0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence</td>
<td>0.0818</td>
</tr>
<tr>
<td>sequences</td>
<td>0.0493</td>
</tr>
<tr>
<td>genome</td>
<td>0.033</td>
</tr>
<tr>
<td>dna</td>
<td>0.0257</td>
</tr>
<tr>
<td>sequencing</td>
<td>0.0172</td>
</tr>
<tr>
<td>map</td>
<td>0.0123</td>
</tr>
<tr>
<td>genes</td>
<td>0.0122</td>
</tr>
<tr>
<td>chromosome</td>
<td>0.0119</td>
</tr>
<tr>
<td>regions</td>
<td>0.0119</td>
</tr>
<tr>
<td>human</td>
<td>0.0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>years</td>
<td>0.156</td>
</tr>
<tr>
<td>million</td>
<td>0.0556</td>
</tr>
<tr>
<td>ago</td>
<td>0.045</td>
</tr>
<tr>
<td>time</td>
<td>0.0317</td>
</tr>
<tr>
<td>age</td>
<td>0.0243</td>
</tr>
<tr>
<td>year</td>
<td>0.024</td>
</tr>
<tr>
<td>record</td>
<td>0.0238</td>
</tr>
<tr>
<td>early</td>
<td>0.0233</td>
</tr>
<tr>
<td>billion</td>
<td>0.0177</td>
</tr>
<tr>
<td>history</td>
<td>0.0148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacteria</td>
<td>0.0983</td>
</tr>
<tr>
<td>bacterial</td>
<td>0.0561</td>
</tr>
<tr>
<td>resistance</td>
<td>0.0431</td>
</tr>
<tr>
<td>coli</td>
<td>0.0381</td>
</tr>
<tr>
<td>strains</td>
<td>0.025</td>
</tr>
<tr>
<td>microbiol</td>
<td>0.0214</td>
</tr>
<tr>
<td>microbial</td>
<td>0.0196</td>
</tr>
<tr>
<td>strain</td>
<td>0.0165</td>
</tr>
<tr>
<td>salmonella</td>
<td>0.0163</td>
</tr>
<tr>
<td>resistant</td>
<td>0.0145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>0.0558</td>
</tr>
<tr>
<td>females</td>
<td>0.0541</td>
</tr>
<tr>
<td>female</td>
<td>0.0529</td>
</tr>
<tr>
<td>males</td>
<td>0.0477</td>
</tr>
<tr>
<td>sex</td>
<td>0.0339</td>
</tr>
<tr>
<td>reproductive</td>
<td>0.0172</td>
</tr>
<tr>
<td>offspring</td>
<td>0.0168</td>
</tr>
<tr>
<td>sexual</td>
<td>0.0166</td>
</tr>
<tr>
<td>reproduction</td>
<td>0.0143</td>
</tr>
<tr>
<td>eggs</td>
<td>0.0138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>0.0811</td>
</tr>
<tr>
<td>physics</td>
<td>0.0782</td>
</tr>
<tr>
<td>physicists</td>
<td>0.0146</td>
</tr>
<tr>
<td>einstein</td>
<td>0.0142</td>
</tr>
<tr>
<td>university</td>
<td>0.013</td>
</tr>
<tr>
<td>gravity</td>
<td>0.013</td>
</tr>
<tr>
<td>black</td>
<td>0.0127</td>
</tr>
<tr>
<td>theories</td>
<td>0.01</td>
</tr>
<tr>
<td>aps</td>
<td>0.00987</td>
</tr>
<tr>
<td>matter</td>
<td>0.00954</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>immune</td>
<td>0.0909</td>
</tr>
<tr>
<td>response</td>
<td>0.0375</td>
</tr>
<tr>
<td>system</td>
<td>0.0358</td>
</tr>
<tr>
<td>responses</td>
<td>0.0322</td>
</tr>
<tr>
<td>antigen</td>
<td>0.0263</td>
</tr>
<tr>
<td>antigens</td>
<td>0.0184</td>
</tr>
<tr>
<td>immunity</td>
<td>0.0176</td>
</tr>
<tr>
<td>immunology</td>
<td>0.0145</td>
</tr>
<tr>
<td>antibody</td>
<td>0.014</td>
</tr>
<tr>
<td>autoimmune</td>
<td>0.0128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>stars</td>
<td>0.0524</td>
</tr>
<tr>
<td>star</td>
<td>0.0458</td>
</tr>
<tr>
<td>astrophys</td>
<td>0.0237</td>
</tr>
<tr>
<td>mass</td>
<td>0.021</td>
</tr>
<tr>
<td>disk</td>
<td>0.0173</td>
</tr>
<tr>
<td>black</td>
<td>0.0161</td>
</tr>
<tr>
<td>gas</td>
<td>0.0149</td>
</tr>
<tr>
<td>stellar</td>
<td>0.0127</td>
</tr>
<tr>
<td>astron</td>
<td>0.0125</td>
</tr>
<tr>
<td>hole</td>
<td>0.00824</td>
</tr>
</tbody>
</table>
Example: topics of a document

\[P(z|i) = \hat{\theta}_i \]

Colored according to
\[
\arg \max_z P(z|i, w) = \arg \max_z \hat{\theta}_i(z) \hat{\phi}_z(w)
\]

... Delays due to the volcanic ash cloud will affect Formula 1 teams' preparations ...
Problems of PLSA

- Not really a probabilistic model of document collections
 - How do we compute the probability of an unseen document?

- It overfits
 - There are techniques to deal with it (e.g., temporal annealing) but they are not necessary pretty

- It does provide a direct way to encode some prior knowledge, e.g.:
 - There are only a few topics per document
 - Words have only few senses
 - ...

What can we do about it?
Lecture

- A motivation for topic modeling
- A simple topic model (PLSA)
- A refresher for EM
- EM for PLSA
- Problems with PLSA => LDA
- MCMC methods => Gibbs sampling
- ...
You saw the cab #199 from the train in a small Finnish town. Assuming that taxis are numbered sequentially, how many taxis are in the town?