Learning for Structured Prediction

Linear Methods For Sequence Labeling:
Hidden Markov Models vs Structured Perceptron

Ivan Titov
Last Time: Structured Prediction

1. **Selecting feature representation** $\varphi(x, y)$
 - It should be sufficient to discriminate correct structure from incorrect ones
 - It should be possible to decode with it (see (3))

2. **Learning**
 - Which error function to optimize on the training set, for example
 $$w \cdot \varphi(x, y^*) - \max_{y' \in \mathcal{Y}(x), y \neq y^*} w \cdot \varphi(x, y') > \gamma$$
 - How to make it efficient (see (3))

3. **Decoding**: $y = \arg\max_{y' \in \mathcal{Y}(x)} w \cdot \varphi(x, y')$
 - Dynamic programming for simpler representations φ?
 - Approximate search for more powerful ones?

We illustrated all these challenges on the example of dependency parsing

x is an input (e.g., sentence), y is an output (syntactic tree)
Outline

- Sequence labeling / segmentation problems: settings and example problems:
 - Part-of-speech tagging, named entity recognition, gesture recognition
- Hidden Markov Model
 - Standard definition + maximum likelihood estimation
 - General views: as a representative of linear models
- Perceptron and Structured Perceptron
 - algorithms / motivations
- Decoding with the Linear Model
- Discussion: Discriminative vs. Generative
Sequence Labeling Problems

- **Definition:**
 - **Input:** sequences of variable length \(x = (x_1, x_2, \ldots, x_{|x|}), x_i \in X \)
 - **Output:** every position is labeled \(y = (y_1, y_2, \ldots, y_{|x|}), y_i \in Y \)

- **Examples:**
 - Part-of-speech tagging
 \[
 x = \text{John} \quad \text{carried} \quad \text{a} \quad \text{tin} \quad \text{can} .
 \]
 \[
 y = \text{NP} \quad \text{VBD} \quad \text{DT} \quad \text{NN} \quad \text{NN} .
 \]
 - Named-entity recognition, shallow parsing (“chunking”), gesture recognition from video-streams, ...
Part-of-speech tagging

\[x = \text{John} \quad \text{carried} \quad \text{a} \quad \text{tin} \quad \text{can} \quad . \]
\[y = \text{NNP} \quad \text{VBD} \quad \text{DT} \quad \text{NN} \quad \text{NN} \quad \text{or MD?} \quad . \]

- **Labels:**
 - NNP - proper singular noun;
 - VBD - verb, past tense
 - DT - determiner
 - NN - singular noun
 - MD - modal

Consider

\[x = \text{Tin} \quad \text{can} \quad \text{cause} \quad \text{poisoning} \quad . \]
\[y = \text{NN} \quad \text{MD} \quad \text{VB} \quad \text{NN} \quad . \]

In fact, even knowing that the previous word is a noun is not enough to make a mistake here. One need to model interactions between labels to successfully resolve ambiguities, so this should be tackled as a structured prediction problem.
Named Entity Recognition

[ORG Chelsea], despite their name, are not based in [LOC Chelsea], but in neighbouring [LOC Fulham].

- Not as trivial as it may seem, consider:
 - [PERS Bill Clinton] will not embarrass [PERS Chelsea] at her wedding
 - Tiger failed to make a birdie in the South Course …

- Encoding example (BIO-encoding)

$x = \text{Bill Clinton embarrassed Chelsea at her wedding at Astor Courts}$

$y = \text{B-PERS I-PERS O B-PERS O O O O B-LOC I-LOC}$

Chelsea can be a person too!

Is it an animal or a person?
Vision: Gesture Recognition

- Given a sequence of frames in a video annotate each frame with a gesture type:

- Types of gestures:

- It is hard to predict gestures from each frame in isolation, you need to exploit relations between frames and gesture types.

Figures from (Wang et al., CVPR 06)
Outline

- Sequence labeling / segmentation problems: settings and example problems:
 - Part-of-speech tagging, named entity recognition, gesture recognition

- Hidden Markov Model
 - Standard definition + maximum likelihood estimation
 - General views: as a representative of linear models

- Perceptron and Structured Perceptron
 - Algorithms / motivations

- Decoding with the Linear Model

- Discussion: Discriminative vs. Generative
Hidden Markov Models

- We will consider the part-of-speech (POS) tagging example

 John carried a tin can.

 NP VBD DT NN NN .

- A “generative” model, i.e.:

 Model: Introduce a parameterized model of how both words and tags are generated $P(x, y|\theta)$

 Learning: use a labeled training set to estimate the most likely parameters of the model $\hat{\theta}$

 Decoding: $y = \arg\max_{y'} P(x, y'|\hat{\theta})$
Hidden Markov Models

A simplistic state diagram for noun phrases: \(N \) – tags, \(M \) – vocabulary size

- States correspond to POS tags,
- Words are emitted independently from each POS tag
- Parameters (to be estimated from the training set):
 - Transition probabilities \(P(y(t)|y(t-1)) \): \([N \times N]\) matrix
 - Emission probabilities \(P(x(t)|y(t)) \): \([N \times M]\) matrix

Example:

\begin{align*}
\text{Det} & \quad \text{Adj} & \quad \text{Noun} \\
0.8 & \quad 0.5 & \quad 0.1 \\
0.1 & \quad 0.2 & \quad 0.8 \\
1.0 & \quad 0.5 & \quad 0.5 \\
\text{[0.01 : dog} & \quad \text{[0.01 : herring, ...]} & \quad \text{[0.5 : a} \\
\text{0.01 : hungry, ...]} & \quad \text{0.5 : the]} & \quad \text{0.01 : the]}
\end{align*}

Stationarity assumption: this probability does not depend on the position in the sequence \(t \)
Hidden Markov Models

Representation as an instantiation of a graphical model: \(N \) – tags, \(M \) – vocabulary size

- States correspond to POS tags,
- Words are emitted independently from each POS tag
- Parameters (to be estimated from the training set):
 - Transition probabilities \(P(y^{(t)}|y^{(t-1)}) \) : \([N \times N]\) matrix
 - Emission probabilities \(P(x^{(t)}|y^{(t)}) \) : \([N \times M]\) matrix

A arrow means that in the generative story \(x^{(4)} \) is generated from some \(P(x^{(4)}|y^{(4)}) \)

Stationarity assumption: this probability does not depend on the position in the sequence \(t \)

- \(y^{(1)} = \text{Det} \)
- \(y^{(2)} = \text{Adj} \)
- \(y^{(3)} = \text{Noun} \)
- \(y^{(4)} \)
- \(x^{(1)} = a \)
- \(x^{(2)} = \text{hungry} \)
- \(x^{(3)} = \text{dog} \)
- \(x^{(4)} \)
Hidden Markov Models: Estimation

- N – the number of tags, M – vocabulary size

Parameters (to be estimated from the training set):

- Transition probabilities $a_{ji} = P(y(t) = i | y(t-1) = j)$, A - $[N \times N]$ matrix
- Emission probabilities $b_{ik} = P(x(t) = k | y(t) = i)$, B - $[N \times M]$ matrix

Training corpus:

- $x^{(1)} = \text{(In, an, Oct., 19, review, of, ...)}, y^{(1)} = \text{(IN, DT, NNP, CD, NN, IN, ...)}$
- $x^{(2)} = \text{(Ms., Haag, plays, Elianti, ...)}, y^{(2)} = \text{(NNP, NNP, VBZ, NNP, ...)}$
- ...
- $x^{(L)} = \text{(The, company, said, ...)}, y^{(L)} = \text{(DT, NN, VBD, NNP, ...)}$

How to estimate the parameters using maximum likelihood estimation?

- You probably can guess what these estimation should be?
Hidden Markov Models: Estimation

- Parameters (to be estimated from the training set):
 - Transition probabilities \(a_{ji} = P(y^{(t)} = i | y^{(t-1)} = j) \), \(A \) - \([N \times N]\) matrix
 - Emission probabilities \(b_{ik} = P(x^{(t)} = k | y^{(t)} = i) \), \(B \) - \([N \times M]\) matrix

- Training corpus: \((x^{(l)}, y^{(l)})\), \(l = 1, \ldots, L \)

- Write down the probability of the corpus according to the HMM:
 \[
P(\{x^{(l)}, y^{(l)}\}_{l=1}^{L}) = \prod_{l=1}^{L} P(x^{(l)}, y^{(l)}) = \prod_{l=1}^{L} a_{y^{(l)}, y^{(l-1)}} \left(\prod_{t=1}^{L} b_{y^{(l)}, x^{(l)}, a_{y^{(l)}, y^{(l+1)}}} \right) b_{y^{(l)}, x^{(l)}, a_{y^{(l)}, y^{(l+1)}}} \]

 \[
 = \prod_{l=1}^{L} a_{y^{(l)}, y^{(l-1)}} \left(\prod_{t=1}^{L} b_{y^{(l)}, x^{(l)}, a_{y^{(l)}, y^{(l+1)}}} \right) b_{y^{(l)}, x^{(l)}, a_{y^{(l)}, y^{(l+1)}}} \]

\(C_T(i,j) \) is \#times tag \(i \) is followed by tag \(j \).

Here we assume that \$ is a special tag which precedes and succeeds every sentence.

\(C_E(i,k) \) is \#times word \(k \) is emitted by tag \(i \).
Hidden Markov Models: Estimation

- Maximize: \(P(\{x^{(l)}, y^{(l)}\}_{l=1}^L) = \prod_{i,j=1}^N a_{i,j} \prod_{i=1}^N \prod_{k=1}^M b_{i,k} C_T(i,j)^{C_T(i,j)} \)

- Equivalently maximize the logarithm of this:
 \[\log(P(\{x^{(l)}, y^{(l)}\}_{l=1}^L)) = \sum_{i=1}^N \left(\sum_{j=1}^N C_T(i,j) \log a_{i,j} + \sum_{k=1}^M C_E(i,k) \log b_{i,k} \right) \]

subject to probabilistic constraints:
\[\sum_{j=1}^N a_{i,j} = 1, \quad \sum_{i=1}^N b_{i,k} = 1, \quad i = 1, \ldots, N \]

- Or, we can decompose it into 2N optimization tasks:

 For transitions
 \(i = 1, \ldots, N: \)
 \[\max_{a_{i,1}, \ldots, a_{i,N}} \sum_{j=1}^N C_T(i,j) \log a_{i,j} \]
 \[\text{s.t.} \quad \sum_{j=1}^N a_{i,j} = 1 \]

 For emissions
 \(i = 1, \ldots, N: \)
 \[\max_{b_{i,1}, \ldots, b_{i,M}} C_E(i,k) \log b_{i,k} \]
 \[\text{s.t.} \quad \sum_{i=1}^N b_{i,k} = 1 \]
Hidden Markov Models: Estimation

- For transitions (some i)
 \[
 \max_{a_{i,1}, \ldots, a_{i,N}} \sum_{j=1}^{N} C_T(i, j) \log a_{i,j} \\
 \text{s.t. } 1 - \sum_{j=1}^{N} a_{i,j} = 0
 \]

- Constrained optimization task, Lagrangian:
 \[
 L(a_{i,1}, \ldots, a_{i,N}, \lambda) = \sum_{j=1}^{N} C_T(i, j) \log a_{i,j} + \lambda \times (1 - \sum_{j=1}^{N} a_{i,j})
 \]

- Find critical points of Lagrangian by solving the system of equations:
 \[
 \frac{\partial L}{\partial \lambda} = 1 - \sum_{j=1}^{N} a_{i,j} = 0 \\
 \frac{\partial L}{\partial a_{ij}} = \frac{C_T(i,j)}{a_{ij}} - \lambda = 0 \implies a_{ij} = \frac{C_T(i,j)}{\lambda}
 \]

 \[
 P(y^t = j \mid y^{t-1} = i) = a_{i,j} = \frac{C_T(i,j)}{\sum_j C_T(i,j')}
 \]

- Similarly, for emissions:
 \[
 P(x^t = k \mid y^t = i) = b_{i,k} = \frac{C_E(i,k)}{\sum_{k'} C_E(i,k')}
 \]

The maximum likelihood solution is just normalized counts of events. Always like this for generative models if all the labels are visible in training.

I ignore “smoothing” to process rare or unseen word tag combinations… Outside score of the seminar
HMMs as linear models

John carried a tin can.

- **Decoding:** \(y = \arg\max_{y'} P(x, y'|A, B) = \arg\max_{y'} \log P(x, y'|A, B) \)
- We will talk about the decoding algorithm slightly later, let us generalize Hidden Markov Model:

\[
\log P(x, y'|A, B) = \sum_{i=1}^{\lvert x \rvert + 1} \log b_{y'_i, x_i} + \log a_{y'_i, y'_{i+1}} \\
= \sum_{i=1}^{N} \sum_{j=1}^{N} C_T(y', i, j) \times \log a_{i,j} + \sum_{i=1}^{N} \sum_{k=1}^{M} C_E(x, y', i, k) \times \log b_{i,k}
\]

The number of times tag \(i \) is followed by tag \(j \) in the candidate \(y' \)

The number of times tag \(i \) corresponds to word \(k \) in \((x, y')\)

- But this is just a linear model!!
Scoring: example

\[(x, y') = \begin{pmatrix} \text{John} \\ \text{NP} \end{pmatrix} \text{ carried } \begin{pmatrix} \text{a} \\ \text{DT} \end{pmatrix} \text{ tin } \begin{pmatrix} \text{NN} \\ \text{NN} \end{pmatrix} \text{ can } . \]

\[\varphi(x, y') = \begin{pmatrix} 1 \\ 0 \\ \ldots \\ 1 \\ 1 \\ 0 \\ \ldots \end{pmatrix} \]

- Their inner product is exactly \[\log P(x, y'|A, B)\]

\[w_{ML} = \begin{pmatrix} \log b_{NP, John} \\ \log b_{NP, Mary} \\ \ldots \\ \log a_{NN, VBD} \\ \log a_{NN, -} \\ \log a_{MD, -} \\ \ldots \end{pmatrix} \]

- Their inner product is exactly \[\log P(x, y'|A, B)\]

\[w_{ML} \cdot \varphi(x, y') = \sum_{i=1}^{N} \sum_{j=1}^{N} C_T(y', i, j) \times \log a_{i,j} + \sum_{i=1}^{N} \sum_{k=1}^{M} C_E(x, y', i, k) \times \log b_{i,k} \]

- But may be there other (and better?) ways to estimate \(w\), especially when we know that HMM is not a faithful model of reality?

- It is not only a theoretical question! (we’ll talk about that in a moment)
Feature view

Basically, we define features which correspond to edges in the graph:

- \(y^{(1)} \)
- \(y^{(2)} \)
- \(y^{(3)} \)
- \(y^{(4)} \)
- \(x^{(1)} \)
- \(x^{(2)} \)
- \(x^{(3)} \)
- \(x^{(4)} \)

Shaded because they are visible (both in training and testing)
Generative modeling

- For a very large dataset (asymptotic analysis):
 - If data is generated from some “true” HMM, then (if the training set is sufficiently large), we are guaranteed to have an optimal tagger
 - Otherwise, (generally) HMM will not correspond to an optimal linear classifier
 - Discriminative methods which minimize the error more directly are guaranteed (under some fairly general conditions) to converge to an optimal linear classifier

- For smaller training sets
 - Generative classifiers converge faster to their optimal error [Ng & Jordan, NIPS 01]

Errors on a regression dataset (predict housing prices in Boston area):
Outline

- Sequence labeling / segmentation problems: settings and example problems:
 - Part-of-speech tagging, named entity recognition, gesture recognition
- Hidden Markov Model
 - Standard definition + maximum likelihood estimation
 - General views: as a representative of linear models
- Perceptron and Structured Perceptron
 - algorithms / motivations
- Decoding with the Linear Model
- Discussion: Discriminative vs. Generative
Let us start with a binary classification problem \(y \in \{+1, -1\} \).

For binary classification, the prediction rule is: \(y = \text{sign}(\mathbf{w} \cdot \varphi(x)) \).

Perceptron algorithm, given a training set \(\{x^{(l)}, y^{(l)}\}_{l=1}^{L} \):

\[
\mathbf{w} = \mathbf{0} \quad // \text{initialize} \\
do \\
\text{err} = 0 \\
\text{for } l = 1 \ldots L \\
\quad \text{if } (y^{(l)}(\mathbf{w} \cdot \varphi(x^{(l)})) < 0) \quad // \text{if mistake} \\
\quad \mathbf{w} += \eta y^{(l)} \varphi(x^{(l)}) \quad // \text{update}, \eta > 0 \\
\quad \text{err} ++ \quad // \# \text{ errors} \\
endfor \\
while (\text{err} > 0) \quad // \text{repeat until no errors} \\
\text{return } \mathbf{w}
\]
Linear classification

- Linear separable case, “a perfect” classifier:

\[(\mathbf{w} \cdot \varphi(x) + b) = 0\]

- Linear functions are often written as: \[y = \text{sign} (\mathbf{w} \cdot \varphi(x) + b), \text{ but we can assume that } \varphi(x)_0 = 1 \text{ for any } x\]
if $(y^{(l)}(w \cdot \varphi(x^{(l)})) < 0)$
 $w += \eta y^{(l)} \varphi(x^{(l)})$
endif
Perceptron: geometric interpretation

\[
\text{if } \left(y^{(l)} (w \cdot \varphi(x^{(l)})) < 0 \right) \quad \text{// if mistake}
\]
\[
\quad w += \eta y^{(l)} \varphi(x^{(l)}) \quad \text{// update}
\]
endif
Perceptron: geometric interpretation

\[
\text{if } (y^{(l)}(w \cdot \varphi(x^{(l)})) < 0) \quad \text{// if mistake}
\]
\[
w += \eta y^{(l)} \varphi(x^{(l)}) \quad \text{// update}
\]
\text{endif}
Perceptron: geometric interpretation

\[
\text{if } (y^{(l)}(w \cdot \varphi(x^{(l)})) < 0) \quad \text{// if mistake}
\]

\[
w += \eta y^{(l)} \varphi(x^{(l)}) \quad \text{// update}
\]

\text{endif}
Perceptron: algebraic interpretation

if \(y^{(l)}(w \cdot \varphi(x^{(l)})) < 0 \) // if mistake
\[w \leftarrow w + \eta y^{(l)} \varphi(x^{(l)}) \] // update
endif

- We want after the update to **increase** \(y^{(l)}(w \cdot \varphi(x^{(l)})) \)
- If the increase is large enough than there will be no misclassification
- Let’s see that’s what happens after the update

\[
y^{(l)}((w + \eta y^{(l)} \varphi(x^{(l)})) \cdot \varphi(x^{(l)}))
\]

\[
= y^{(l)}(w \cdot \varphi(x^{(l)})) + \eta (y^{(l)})^2 (\varphi(x^{(l)}) \cdot \varphi(x^{(l)}))
\]

\[
(y^{(l)})^2 = 1 \quad \text{ squared norm } > 0
\]

- So, the perceptron update moves the decision hyperplane towards misclassified \(\varphi(x^{(l)}) \)
The perceptron algorithm, obviously, can only converge if the training set is linearly separable. It is guaranteed to converge in a finite number of iterations, dependent on how well two classes are separated (Novikoff, 1962).
Averaged Perceptron

- A small modification

\[
\begin{align*}
 w &= 0, \quad w^\Sigma = 0 \quad \text{// initialize} \\
 \text{for } k &= 1 \ldots K \quad \text{// for a number of iterations} \\
 \text{for } l &= 1 \ldots L \quad \text{// over the training examples} \\
 \text{if } (y^{(l)}(w \cdot \varphi(x^{(l)})) < 0) \quad \text{// if mistake} \\
 w &= +\eta y^{(l)} \varphi(x^{(l)}) \quad \text{// update, } \eta > 0 \\
 w^\Sigma &= +w \quad \text{// sum of } w \text{ over the course of training} \\
\end{align*}
\]

Do not run until convergence

Note: it is after endif

More stable in training: a vector \(w \) which survived more iterations without updates is more similar to the resulting vector \(\frac{1}{KL} w^\Sigma \), as it was added a larger number of times
Structured Perceptron

Let us start with the structured problem: \(y = \arg \max_{y' \in \mathcal{Y}(x)} w \cdot \varphi(x, y') \)

Perceptron algorithm, given a training set \(\{x^{(l)}, y^{(l)}\}_{l=1}^{L} \)

\[
\begin{align*}
w & = 0 \quad // \text{initialize} \\
do & \\
\text{err} & = 0 \\
\text{for } l & = 1 \ldots L \quad // \text{over the training examples} \\
\hat{y} & = \arg \max_{y' \in \mathcal{Y}(x^{(l)})} w \cdot \varphi(x^{(l)}, y') \quad // \text{model prediction} \\
\text{if } (w \cdot \varphi(x^{(l)}, \hat{y}) > w \cdot \varphi(x^{(l)}, y^{(l)})) & \quad // \text{if mistake} \\
w & += \eta \left(\varphi(x^{(l)}, y^{(l)}) - \varphi(x^{(l)}, \hat{y}) \right) \quad // \text{update} \\
\text{err} & += \quad // \# \text{errors} \\
endif & \\
endfor & \\
while (\text{err} > 0) \quad // \text{repeat until no errors} \\
\text{return } w &
\end{align*}
\]

Pushes the correct sequence up and the incorrectly predicted one down
Str. perceptron: algebraic interpretation

\[
\text{if } (\mathbf{w} \cdot \varphi(\mathbf{x}^{(l)}, \hat{y}) > \mathbf{w} \cdot \varphi(\mathbf{x}^{(l)}, y^{(l)})) \quad \text{// if mistake}
\]
\[
\mathbf{w} += \eta (\varphi(\mathbf{x}^{(l)}, y^{(l)}) - \varphi(\mathbf{x}^{(l)}, \hat{y})) \quad \text{// update}
\]

- We want after the update to increase \(\mathbf{w} \cdot (\varphi(\mathbf{x}^{(l)}, y^{(l)}) - \varphi(\mathbf{x}^{(l)}, \hat{y})) \)
- If the increase is large enough then \(y^{(l)} \) will be scored above \(\hat{y} \)
- Clearly, that this is achieved as this product will be increased by

\[
\eta \| \varphi(\mathbf{x}^{(l)}, y^{(l)}) - \varphi(\mathbf{x}^{(l)}, \hat{y}) \|^2
\]

There might be other \(y' \in \mathcal{Y}(\mathbf{x}^{(l)}) \) but we will deal with them on the next iterations.
Structured Perceptron

- **Positive:**
 - Very easy to implement
 - Often, achieves respectable results
 - As other discriminative techniques, does not make assumptions about the generative process
 - Additional features can be easily integrated, as long as decoding is tractable

- **Drawbacks**
 - “Good” discriminative algorithms should optimize some measure which is closely related to the expected testing results: what perceptron is doing on non-linearly separable data seems not clear
 - However, for the averaged (voted) version a generalization bound which generalization properties of Perceptron (Freund & Shapire 98)

- Later, we will consider more advance learning algorithms
Outline

- Sequence labeling / segmentation problems: settings and example problems:
 - Part-of-speech tagging, named entity recognition, gesture recognition
- Hidden Markov Model
 - Standard definition + maximum likelihood estimation
 - General views: as a representative of linear models
- Perceptron and Structured Perceptron
 - Algorithms / motivations
- Decoding with the Linear Model
- Discussion: Discriminative vs. Generative
Decoding with the Linear model

- Decoding: $y = \arg\max_{y' \in \mathcal{Y}(x)} w \cdot \varphi(x, y')$

- Again a linear model with the following edge features (a generalization of a HMM)

- In fact, the algorithm does not depend on the feature of input (they do not need to be *local*).
Decoding with the Linear model

- Decoding: \(y = \arg\max_{y' \in \mathcal{Y}(x)} w \cdot \varphi(x, y') \)
- Again a linear model with the following edge features (a generalization of a HMM)
- In fact, the algorithm does not depend on the feature of input (they do not need to be local)
Decoding with the Linear model

Decoding: \(y = \text{argmax}_{y' \in Y(x)} w \cdot \varphi(x, y') \)

- Let’s change notation:
 - Edge scores \(f_t(y_{t-1}, y_t, x) \): roughly corresponds to \(\log a_{y_{t-1}, y_t} + \log b_{y_t, x_t} \)
 - Defined for \(t = 0 \) too (“start” feature: \(y_0 = \$ \))
 - Decode: \(y = \text{argmax}_{y' \in Y(x)} \sum_{t=1}^{|x|} f_t(y'_{t-1}, y'_t, x) \)
 - Decoding: a dynamic programming algorithm - Viterbi algorithm

Start/Stop symbol information ($) can be encoded with them too.
Viterbi algorithm

- **Decoding:** \(y = \arg\max_{y' \in \mathcal{Y}(x)} \sum_{t=1}^{|x|} f_t(y'_{t-1}, y'_t, x) \)

- **Loop invariant:** \((t = 1, \ldots, |x|)\)
 - \(\text{score}_t[y]\) - score of the highest scoring sequence up to position \(t\) with
 - \(\text{prev}_t[y]\) - previous tag on this sequence

- **Init:** \(\text{score}_0[\$] = 0, \text{score}_0[y] = -\infty\) for other \(y\)

- **Recomputation** \((t = 1, \ldots, |x|)\)
 - \(\text{prev}_t[y] = \arg\max_{y'} \text{score}_t[y'] + f_t(y', y, x)\)
 - \(\text{score}_t[y] = \text{score}_{t-1}[\text{prev}_t[y]] + f_t(\text{prev}_t[y], y, x)\)

- **Return:** retrace prev pointers starting from \(\arg\max_y \text{score}_{|x|}[y]\)

Time complexity? \(O(N^2|x|)\)
Outline

- Sequence labeling / segmentation problems: settings and example problems:
 - Part-of-speech tagging, named entity recognition, gesture recognition
- Hidden Markov Model
 - Standard definition + maximum likelihood estimation
 - General views: as a representative of linear models
- Perceptron and Structured Perceptron
 - Algorithms / motivations
- Decoding with the Linear Model
- Discussion: Discriminative vs. Generative
Recap: Sequence Labeling

- **Hidden Markov Models:**
 - How to estimate

- **Discriminative models**
 - How to learn with structured perceptron

- **Both learning algorithms result in a linear model**
 - How to label with the linear models
Discriminative vs Generative

- **Generative models:**
 - **Cheap to estimate:** simply normalized counts
 - Hard to integrate **complex features:** need to come up with a generative story and this story may be wrong
 - Does not result in an optimal classifier when model assumptions are wrong (i.e., always)

- **Discriminative models**
 - **More expensive to learn:** need to run decoding (here, Viterbi) during training and usually multiple times per an example
 - **Easy to integrate features:** though some feature may make decoding intractable
 - Usually **less accurate on small datasets**
Reminders

- **Speakers**: slides about a week before the talk, meetings with me before/after this point will normally be needed
- **Reviewers**: reviews are accepted only before the day we consider the topic
- **Everyone**: References to the papers to read at GoogleDocs,

- These slides (and previous ones) will be online today
 - speakers: send me the last version of your slides too

- Next time: Lea about Models of Parsing, PCFGs vs general WCFGs (Michael Collins’ book chapter)